Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 2 – Đại số và giải tích 11

Bình chọn:
3.8 trên 5 phiếu

Đáp án và lời giải chi tiết Đề thi kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 2 – Đại số và giải tích 11

Đề bài

I. PHẦN TRẮC NGHIỆM

Câu 1: Tập xác định của hàm số: \(y = \dfrac{1}{{\sqrt {1 - cos3x} }}\) là:

A.\(\left\{ {k\dfrac{\pi }{3};k \in \mathbb{Z}} \right\}\)

\(B.\mathbb{R}\backslash \left\{ {k\dfrac{{2\pi }}{3};k \in \mathbb{Z}} \right\}\)          

\(C.\left\{ {\dfrac{{k2\pi }}{3};k \in \mathbb{Z}} \right\}\)

D. \(\mathbb{R}\backslash \left\{ {\dfrac{{k\pi }}{3};k \in \mathbb{Z}} \right\}\)

Câu 2: Tập giá trị của hàm số \(y = 2\sqrt 3 \sin 2x - 2cos2x\) là:

 A. [-1; 1]            B. [-2; 2]                             

C. [-3; 3]             D. [-4; 4]

Câu 3: Phương trình \(2\sin \left( {2x + \dfrac{\pi }{4}} \right) = 1\) có các họ nghiệm là:

A. \(x =  - \dfrac{\pi }{{12}} + k2\pi ;\,k \in \mathbb{Z}\)

B. \(x = \dfrac{{7\pi }}{{12}} + k2\pi ;\,k \in \mathbb{Z}\)             

C. Cả A và B 

D. Đáp án khác

Câu 4: Hàm số \(y = cos2x\, - \,{\sin ^2}x\) là:

A. Hàm số chẵn

B. Hàm số lẻ                          

C. Hàm số không chẵn, không lẻ

D. Hàm số vừa chẵn, vừa lẻ

Câu 5: Phương trình \(\cot \left( {2x + \dfrac{\pi }{3}} \right) + 1 = 0\) có các họ nghiệm là:

\(A.\,x =  - \dfrac{{7\pi }}{{24}} + k\pi ,k \in \mathbb{Z}\)

\(B.\,x = \dfrac{{7\pi }}{{24}} + k\pi ,\,k \in \mathbb{Z}\)              

\(C.\,x = \dfrac{\pi }{{24}} + k\dfrac{\pi }{2};\,k \in \mathbb{Z}\)

D. \(x = \dfrac{{ - 7\pi }}{{24}} + k\dfrac{\pi }{2};k \in \mathbb{Z}\)

Câu 6: Phương trình \(2co{s^2}2x\, + \,\left( {\sqrt 3  - 2} \right)cos2x\, - \sqrt 3  = 0\) có các họ nghiệm là:

\(A.\,x = k2\pi ,\,x = \dfrac{{ - 5\pi }}{6} + k\pi ,\,x = \dfrac{{5\pi }}{6} + k2\pi ;\,k \in \mathbb{Z}\)

B. \(x = k\pi ; \pm \dfrac{{5\pi }}{{12}} + k\pi ;k \in \mathbb{Z}\)

\(C.\,x = k\pi ;\,x = \dfrac{{5\pi }}{{12}} + k\pi ;\,k \in \mathbb{Z}\)

D. \(x = \dfrac{{ - 5\pi }}{{12}} + k\dfrac{\pi }{2};k \in \mathbb{Z}\)

Câu 7: Phương trình \(\sqrt 2 {\mathop{\rm sinx}\nolimits}  - \sqrt 2 \cos x = \sqrt 3 \) có các họ nghiệm là:

\(\begin{array}{l}A.\,x = \dfrac{{7\pi }}{{12}} + k2\pi ;\,x = \dfrac{{11\pi }}{{12}} + k\pi ,\,k \in \mathbb{Z}\\B.\,x = \dfrac{{5\pi }}{{12}} + k2\pi ,\,x = \dfrac{{11\pi }}{{12}} + k2\pi ;\,k \in \mathbb{Z}\end{array}\)

C. \(x = \dfrac{{7\pi }}{{12}} + k2\pi ;x = \dfrac{{11\pi }}{{12}} + k2\pi ;k \in \mathbb{Z}\)

\(D.\,x = \dfrac{{7\pi }}{{12}} + k\pi ;\,x = \dfrac{{11\pi }}{{12}} + k\pi ;\,k \in \mathbb{Z}\)

Câu 8: Tổng các nghiệm thuộc đoạn  \(\left[ { - \pi ;\pi } \right]\)của phương trình \(\cos 5x + \cos x = \sin 2x - \sin 4x\)là:

A. 0                                         B. \(2\pi \)

C. \(4\pi \)                                D. \(6\pi \)

Câu 9: Giá trị nhỏ nhất của hàm số \(y = \dfrac{{\sin x + 2\cos x + 1}}{{\cos x - 3\sin x + 4}}\) là:

A. \(2\)            B.\( - \dfrac{1}{3}\)

C. \(\dfrac{{ - 1}}{2}\)            D. 1

Câu 10: Phương trình \(3{\sin ^2}x - 7\sin x\cos x - 10{\cos ^2}x = 0\) có các họ nghiệm là:

A. \(x = \dfrac{{ - \pi }}{4} + k2\pi ;x = \arctan \dfrac{{10}}{3} + k2\pi ;k \in \mathbb{Z}\)

B. \(x = \dfrac{{ - \pi }}{4} + k\pi ;x = \arctan \dfrac{7}{2} + k2\pi ;k \in \mathbb{Z}\)

C.\(x = \dfrac{{ - \pi }}{4} + k\pi ;x = \arctan \dfrac{{10}}{3} + k\pi ;k \in \mathbb{Z}\)

D. \(x = \dfrac{{ - \pi }}{4} + k2\pi ;x = \arctan \dfrac{{10}}{3} + k\pi ;k \in \mathbb{Z}\)

Câu 11: Phương trình \(2\sin x = \sqrt 2 \) có bao nhiêu nghiệm thuộc \(\left( {\pi ;6\pi } \right)\):

A.3                                          B.5

C.4                                          D.6

Câu 12: Tổng tất cả các giá trị nguyên của m để phương trình \(\left( {m + 1} \right)\sin x - 2m\cos x + 2m - 1 = 0\) vô nghiệm là:

 A. 15                          B. -15

C. 14                           D. -14

Câu 13: Có bao nhiêu giá trị nguyên của m để phương trình \(\left( {2m + 1} \right)\cos x + m - 1 = 0\) vô nghiệm .

A. 15                           B. 2

C. 3                             D. 1

Câu 14: Tìm m để phương trình \(\cos 2x - \cos x - m = 0\) có nghiệm.

A. \(\dfrac{{ - 9}}{8} \le m \le 2\)

B. \(\dfrac{{ - 9}}{8} \le m \le 1\)

C. \(m \ge \dfrac{{ - 9}}{8}\)

D. \(\dfrac{{ - 5}}{8} \le m \le 2\)

Câu 15: Phương trình \(\sqrt 3 {\cot ^2}x - 4\cot x + \sqrt 3  = 0\) có nghiệm là:

A. \(\left[ \begin{array}{l}x = \dfrac{\pi }{3} + k\pi \\x = \dfrac{\pi }{6} + k\pi \end{array} \right.\,\,\left( {k \in Z} \right)\)

B. \(\left[ \begin{array}{l}x = \dfrac{\pi }{3} + k2\pi \\x = \dfrac{\pi }{6} + k2\pi \end{array} \right.\,\,\left( {k \in Z} \right)\)

C. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{3} + k\pi \\x =  - \dfrac{\pi }{6} + k\pi \end{array} \right.\,\,\left( {k \in Z} \right)\)

D. \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{3} + k2\pi \\x = \dfrac{\pi }{6} + k\pi \end{array} \right.\,\,\left( {k \in Z} \right)\)

Câu 16: Cho phương trình \(cos3x – 4 cos2x + 3cos x – 4 = 0\) có bao nhiêu nghiệm trên [0; 14]?

A. 3.                                        B. 4

C. 5                                         D. 6

Câu 17: Tập xác định của hàm số \(y = 2016{\tan ^{2017}}2x\) là

A. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).

B. \(D = \mathbb{R}\backslash \left\{ {k\dfrac{\pi }{2}\left| {k \in \mathbb{Z}} \right.} \right\}\).               

C. \(D = \mathbb{R}\).

D.  \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{4} + k\dfrac{\pi }{2}\left| {k \in \mathbb{Z}} \right.} \right\}\).

Câu 18: Cho hai hàm số \(f\left( x \right) = \dfrac{1}{{x - 3}} + 3{\sin ^2}x\) và \(g\left( x \right) = \sin \sqrt {1 - x} \). Kết luận nào sau đây đúng về tính chẵn lẻ của hai hàm số này?

A. Hai hàm số \(f\left( x \right);g\left( x \right)\) là hai hàm số lẻ.

B. Hàm số \(f\left( x \right)\) là hàm số chẵn; hàm số \(f\left( x \right)\) là hàm số lẻ.

C. Hàm số \(f\left( x \right)\) là hàm số lẻ; hàm số \(g\left( x \right)\) là hàm số không chẵn không lẻ.

D. Cả hai hàm số \(f\left( x \right);g\left( x \right)\) đều là hàm số không chẵn không lẻ.

Câu 19: Phương trình \(1 + \sin \,x\, - \,cos\,x - \sin 2x = 0\) có bao nhiêu nghiệm trên \(\left[ {0;\,\dfrac{\pi }{2}} \right)\)?

A. 1 .                                       B. 2 .

C. 3 .                                       D. 4.

 

Câu 20: Giải phương trình  \({\cos ^3}x - {\sin ^3}x = \cos 2x\)

A. \(x = k2\pi ,x = \dfrac{\pi }{2} + k2\pi ,x = \dfrac{\pi }{4} + k2\pi \).

B. \(x = k2\pi ,x = \dfrac{\pi }{2} + k2\pi ,x = \dfrac{\pi }{4} + k\pi \).

C. \(x = k\pi ,x = \dfrac{\pi }{2} + k\pi ,x = \dfrac{\pi }{4} + k\pi \).

D. \(x = k2\pi ,x = \dfrac{\pi }{2} + k\pi ,x = \dfrac{\pi }{4} + k\pi \).

II. PHẦN TỰ LUẬN

Câu 21: Giải các phương trình sau

a) \(\sqrt 3 \sin 3x + \cos 3x =  - 1\)

b) \(\cos x\cos 5x = \dfrac{1}{2}\cos 6x\)

Câu 22: Giải phương trình sau:

\(2\sin x(1 + \cos 2x) + \sin 2x = 1 + 2\cos x\)  

Lời giải chi tiết

I. PHẦN TRẮC NGHIỆM

Câu

1

2

3

4

5

6

7

8

9

10

Đáp án

B

D

D

A

D

B

C

A

B

C

Câu

11

12

13

14

15

16

17

18

19

20

Đáp án

C

B

D

A

A

B

D

D

B

B

Câu 1:

Điều kiện xác định:

\(1 - \cos 3x \ne 0 \Leftrightarrow \cos 3x \ne 1 \Leftrightarrow 3x \ne k2\pi  \Leftrightarrow x \ne k\dfrac{{2\pi }}{3}\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

Câu 2:

Ta có:\(y = 2\sqrt 3 \sin 2x - 2\cos 2x = 2\sin \left( {2x - \dfrac{\pi }{6}} \right) \Rightarrow y \in \left[ { - 2;2} \right]\)

Chọn đáp án B.

Câu 3:

Ta có: \(2\sin \left( {2x + \dfrac{\pi }{4}} \right) = 1 \Leftrightarrow \sin \left( {2x + \dfrac{\pi }{4}} \right) = \dfrac{1}{2}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x + \dfrac{\pi }{4} = \dfrac{\pi }{6} + k2\pi \\2x + \dfrac{\pi }{4} = \pi  - \dfrac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{\pi }{{24}} + k\pi \\x = \dfrac{{7\pi }}{{24}} + k\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án D.

Câu 4:

Ta có: \(y = \cos 2x - {\sin ^2}x = \cos \left( { - 2x} \right) - {\sin ^2}\left( { - x} \right)\)

Hàm số đã cho là hàm số chẵn

Chọn đáp án A.

Câu 5:

Ta có: \(\cot \left( {2x + \dfrac{\pi }{3}} \right) =  - 1 \Leftrightarrow \cot \left( {2x + \dfrac{\pi }{3}} \right) = \cot \left( { - \dfrac{\pi }{4}} \right)\)

\( \Leftrightarrow 2x + \dfrac{\pi }{3} =  - \dfrac{\pi }{4} + k\pi  \Leftrightarrow x =  - \dfrac{{7\pi }}{{24}} + k\dfrac{\pi }{2}\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án D.

Câu 6:

Ta có: \(2{\cos ^2}2x + \left( {\sqrt 3  - 2} \right)\cos 2x - \sqrt 3  = 0\)

\( \Leftrightarrow \left( {\cos 2x - 1} \right)\left( {2\cos x + \sqrt 3 } \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\cos 2x = 1\\\cos 2x =  - \dfrac{{\sqrt 3 }}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x =  \pm \dfrac{{5\pi }}{{12}} + k\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

Câu 7:

Ta có: \(\sqrt 2 \sin x - \sqrt 2 \cos x = \sqrt 3  \Leftrightarrow 2\sin \left( {x - \dfrac{\pi }{4}} \right) = \sqrt 3 \)

\( \Leftrightarrow \sin \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \dfrac{\pi }{4}} \right) = \sin \dfrac{\pi }{3}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - \dfrac{\pi }{4} = \dfrac{\pi }{3} + k2\pi \\x - \dfrac{\pi }{4} =  - \dfrac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{7\pi }}{{12}} + k2\pi \\x =  - \dfrac{\pi }{{12}} + k2\pi  = \dfrac{{11\pi }}{{12}} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án C.

Câu 8:

Ta có: \(\cos 5x + \cos x = \sin 2x - \sin 4x\)

\( \Leftrightarrow 2\cos 3x.\cos 2x =  - 2\cos 3x\sin x\)

\( \Leftrightarrow 2\cos 3x\left( {\cos 2x + \sin x} \right) = 0\)

\( \Leftrightarrow 2\cos 3x\left( { - 2{{\sin }^2}x + \sin x + 1} \right) = 0\)

\( \Leftrightarrow 2\cos 3x\left( {1 - \sin x} \right)\left( {2\sin x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\cos 3x = 0\\\sin x = 1\\\sin x =  - \dfrac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = \dfrac{\pi }{2} + k\pi \\x = \dfrac{\pi }{2} + k2\pi \\x =  - \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{6} + k\dfrac{\pi }{3}\\x = \dfrac{\pi }{2} + k2\pi \\x =  - \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right.\quad \left( {k \in \mathbb{Z}} \right)\)

Các nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\)là \(\left\{ { - \dfrac{{5\pi }}{6}; - \dfrac{\pi }{2}; - \dfrac{\pi }{6};\dfrac{\pi }{6};\dfrac{\pi }{2};\dfrac{{5\pi }}{6}} \right\}\)

Tổng các nghiệm bằng: 0

Chọn đáp án A.

Câu 9:

Ta có:\(y = \dfrac{{\sin x + 2\cos x + 1}}{{\cos x - 3\sin x + 4}} \Leftrightarrow y\left( {\cos x - 3\sin x + 4} \right) = \sin x + 2\cos x + 1\)

\( \Leftrightarrow \left( {y - 2} \right)\cos x - \left( {3y + 1} \right)\sin x = 1 - 4y\)

Điều kiện có nghiệm: \({\left( {y - 2} \right)^2} + {\left( {3y + 1} \right)^2} \ge {\left( {1 - 4y} \right)^2}\)

\( \Leftrightarrow {y^2} - 4y + 4 + 9{y^2} + 6y + 1 \ge 1 - 8y + 16{y^2}\)

\( \Leftrightarrow 6{y^2} - 10y - 4 \le 0 \Leftrightarrow  - \dfrac{1}{3} \le y \le 2\)

Giá trị nhỏ nhất của hàm số là \(\dfrac{{ - 1}}{3}\)

Chọn đáp án B.

Câu 10:

Ta có: \(3{\sin ^2}x - 7\sin x\cos x - 10{\cos ^2}x = 0\)

\( \Leftrightarrow \left( {3\sin x - 10\cos x} \right)\left( {\sin x + \cos x} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}3\sin x = 10\cos x\\\sin x =  - \cos x\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\tan x = \dfrac{{10}}{3}\\\tan x =  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{\pi }{4} + k\pi \\x = \arctan \left( {\dfrac{{10}}{3}} \right) + k\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án C.

Câu 11:

Ta có: \(2\sin x = \sqrt 2  \Leftrightarrow \sin x = \dfrac{{\sqrt 2 }}{2}\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k2\pi \\x = \dfrac{{3\pi }}{4} + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

+ Với \(x = \dfrac{\pi }{4} + k2\pi  \Rightarrow \pi  < \dfrac{\pi }{4} + k2\pi  < 6\pi  \Rightarrow \dfrac{3}{8} < k < \dfrac{{23}}{8} \Leftrightarrow k \in \left\{ {1;2} \right\}\)

\( \to \) Có 2 nghiệm tương ứng.

+ Với \(x = \dfrac{{3\pi }}{4} + k2\pi  \Rightarrow \pi  < \dfrac{{3\pi }}{4} + k2\pi  < 6\pi  \Rightarrow \dfrac{1}{8} < k < \dfrac{{21}}{8} \Rightarrow k \in \left\{ {1;2} \right\}\)

\( \to \) Có 2 nghiệm tương ứng.

Chọn đáp án C.

Câu 12:

Ta có: \(\left( {m + 1} \right)\sin x - 2m\cos x + 2m - 1 = 0 \Leftrightarrow \left( {m + 1} \right)\sin x - 2m\cos x = 1 - 2m\)

Điều kiện vô nghiệm: \({\left( {m + 1} \right)^2} + 4{m^2} < {\left( {1 - 2m} \right)^2}\)

\( \Leftrightarrow {m^2} + 2m + 1 + 4{m^2} < 1 - 4m + 4{m^2}\)

\( \Leftrightarrow {m^2} + 6m < 0 \Leftrightarrow m \in \left( { - 6;0} \right)\)

Có 5 giá trị của m: -5;-4;-3;-2;-1

Tổng các giá trị là : -15

Chọn đáp án: B

Câu 13:

+ Với \(m =  - \dfrac{1}{2}\) ta có: \(0\cos x = \dfrac{3}{2}\)\( \to \) Phương trình vô nghiệm

+ Với \(m \ne  - \dfrac{1}{2}\) ta có: \(\left( {2m + 1} \right)\cos x + m - 1 = 0 \Rightarrow \cos x = \dfrac{{1 - m}}{{2m + 1}}\)

Phương trình vô nghiệm khi: \(\left[ \begin{array}{l}\dfrac{{1 - m}}{{2m + 1}} > 1\\\dfrac{{1 - m}}{{2m + 1}} <  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\dfrac{{3m}}{{2m + 1}} < 0\\\dfrac{{2 + m}}{{2m + 1}} < 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - \dfrac{1}{2} < m < 0\\ - 2 < m <  - \dfrac{1}{2}\end{array} \right. \Rightarrow m =  - 1\left( {m \in \mathbb{Z}} \right)\)

Chọn đáp án D.

Câu 14:

Ta có: \(\cos 2x - \cos x - m = 0 \Leftrightarrow 2{\cos ^2}x - \cos x - m - 1 = 0\)

Đặt \(t = \cos x,\;t \in \left[ { - 1;1} \right]\)

Khi đó phương trình trở thành: \(2{t^2} - t - m - 1 = 0\)

\({\Delta _t} = {\left( { - 1} \right)^2} + 4.2.\left( {m + 1} \right) = 8m + 9 \ge 0 \Leftrightarrow m \ge  - \dfrac{9}{8}.\)

Phương trình có nghiệm \(t \in \left[ { - 1;1} \right] \Rightarrow  - 1 \le \dfrac{{ - m - 1}}{2} \Leftrightarrow 1 \ge \dfrac{{m + 1}}{2} \Leftrightarrow m \le 1\)

Chọn đáp án B.

Câu 15:

Ta có: \(\sqrt 3 {\cot ^2}x - 4\cot x + \sqrt 3  = 0 \Leftrightarrow \left( {\cot x - \sqrt 3 } \right)\left( {3\cot x - \sqrt 3 } \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\cot x = \sqrt 3 \\\cot x = \dfrac{{\sqrt 3 }}{3}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{3} + k\pi \\x = \dfrac{\pi }{6} + k\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án A.

Câu 16:

Ta có: \(\cos 3x - 4\cos 2x + 3\cos x - 4 = 0\)

\( \Leftrightarrow 4{\cos ^3}x - 3\cos x - 4\left( {2{{\cos }^2}x - 1} \right) + 3\cos x - 4 = 0\)

\( \Leftrightarrow 4{\cos ^3}x - 8{\cos ^2}x = 0 \Leftrightarrow 4{\cos ^2}x\left( {{{\cos }^2}x - 2} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\cos x = 2\end{array} \right. \Leftrightarrow x = \dfrac{\pi }{2} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

Với \(x = \dfrac{\pi }{2} + k\pi  \in \left[ {0;14} \right] \Rightarrow k \in \left[ { - \dfrac{1}{2};3,956} \right] \Rightarrow k \in \left\{ {0;1;2;3} \right\}\)

Chọn đáp án B.

Câu 17:

Tập xác định của hàm số \(y = 2016{\tan ^{2017}}2x\) là \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{4} + k\dfrac{\pi }{2}\left| {k \in \mathbb{Z}} \right.} \right\}\)

Chọn đáp án D.

Câu 18:

Ta có: \(f\left( x \right) = \dfrac{1}{{x - 3}} + 3{\sin ^2}x \Rightarrow f\left( { - x} \right) =  - \dfrac{1}{{x + 3}} + 3{\sin ^2}x\)

\(g\left( x \right) = \sin \sqrt {1 - x}  \Rightarrow g\left( { - x} \right) = \sqrt {1 + x} \)

Cả hai hàm số \(f\left( x \right);g\left( x \right)\) đều là hàm số không chẵn không lẻ

Chọn đáp án D.

Câu 19:

Ta có: \(1 + \sin x - \cos x - \sin 2x = 0\)

\( \Leftrightarrow {\sin ^2}x + {\cos ^2}x - 2\sin x\cos x + \sin x - \cos x = 0\)

\( \Leftrightarrow {\left( {\sin x - \cos x} \right)^2} + \sin x - \cos x = 0\)

\( \Leftrightarrow \left( {\sin x - \cos x} \right)\left( {\sin x - \cos x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin x = \cos x\\\sin x - \cos x =  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\sin \left( {x - \dfrac{\pi }{4}} \right) =  - \dfrac{1}{{\sqrt 2 }}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x = k2\pi \\x = \dfrac{{3\pi }}{2} + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Phương trình có các nghiệm trên \(\left[ {0;\dfrac{\pi }{2}} \right)\) là \(\left\{ {\dfrac{\pi }{4};0} \right\}\)

Chọn đáp án B.

Câu 20:

Ta có: \({\cos ^3}x - {\sin ^3}x = \cos 2x\)

\( \Leftrightarrow \left( {\cos x - \sin x} \right)\left( {1 + \sin x\cos x} \right) = \left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)\)

\( \Leftrightarrow \left( {\cos x - \sin x} \right)\left( {1 + \sin x\cos x - \sin x - \cos x} \right) = 0\)

\( \Leftrightarrow \left( {\cos x - \sin x} \right)\left( {\sin x - 1} \right)\left( {\cos x - 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\sin x = 1\\\cos x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x = \dfrac{\pi }{2} + k2\pi \\x = k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

II. PHẦN TỰ LUẬN

Câu 21:

\(\begin{array}{l}a) & \sqrt 3 \sin 3x + \cos 3x =  - 1 \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin 3x + \dfrac{1}{2}\cos 3x =  - \dfrac{1}{2} \Leftrightarrow \cos \dfrac{\pi }{6}\sin 3x + \sin \dfrac{\pi }{6}\cos 3x =  - \dfrac{1}{2}\\ &  \Leftrightarrow \sin (3x + \dfrac{\pi }{6}) = \sin ( - \dfrac{\pi }{6}) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x + \dfrac{\pi }{6} =  - \dfrac{\pi }{6} + k2\pi }\\{3x + \dfrac{\pi }{6} = \pi  + \dfrac{\pi }{6} + k2\pi }\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x =  - \dfrac{\pi }{9} + k\dfrac{{2\pi }}{3}}\\{x = \dfrac{\pi }{3} + k\dfrac{{2\pi }}{3}}\end{array}\,\,(k \in \mathbb{Z})} \right.} \right.\end{array}\)

Vậy phương trình có nghiệm là: \(x =  - \dfrac{\pi }{9} + k\dfrac{{2\pi }}{3};x = \dfrac{\pi }{3} + k\dfrac{{2\pi }}{3}\)

\(\begin{array}{l}b) & \cos x\cos 5x = \dfrac{1}{2}\cos 6x \Leftrightarrow \dfrac{1}{2}(\cos 6x + \cos 4x) = \dfrac{1}{2}\cos 6x \Leftrightarrow \cos 4x = 0\\ &  \Leftrightarrow 4x = \dfrac{\pi }{2} + k\pi  \Leftrightarrow x = \dfrac{\pi }{8} + k\dfrac{\pi }{4}\,\,(k \in \mathbb{Z})\end{array}\)

Vậy phương trình có nghiệm là: \(x = \dfrac{\pi }{8} + k\dfrac{\pi }{4}\,\,(k \in \mathbb{Z})\)

Câu 22:

\(2\sin x(1 + \cos 2x) + \sin 2x = 1 + 2\cos x\)  

\(\begin{array}{l} \Leftrightarrow 2\sin x.2{\cos ^2}x + 2\sin x\cos x = 1 + 2\cos x\\ \Leftrightarrow \left( {2\cos x + 1} \right)\left( {2\sin x\cos x - 1} \right) = 0\end{array}\)  

 \( \Leftrightarrow \left[ \begin{array}{l}\cos x =  - \dfrac{1}{2}\\\sin 2x = 1\end{array} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = \cos \dfrac{{2\pi }}{3}}\\{2x = \dfrac{\pi }{2} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x =  \pm \dfrac{{2\pi }}{3} + k2\pi }\\{x = \dfrac{\pi }{4} + k\pi }\end{array}} \right.\)

Vậy phương trình có nghiệm là: \(x =  \pm \dfrac{{2\pi }}{3} + k2\pi ;\,x = \dfrac{\pi }{4} + k\pi \)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 3 – Đại số và giải tích 11 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 3 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 3 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 4 – Đại số và giải tích 11 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 4 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 4 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 5 – Đại số và giải tích 11 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 5 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 5 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 1 – Đại số và giải tích 11 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 1 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 1 – Đại số và giải tích 11

Xem chi tiết
Lý thuyết cấp số cộng Lý thuyết cấp số cộng

1. Định nghĩa

Xem chi tiết
Lý thuyết phép vị tự Lý thuyết phép vị tự

Phép vị tự biến tâm vị tự thành chính nó Khi k=1, phép vị tự là phép đồng nhất Khi k = -1, phép vị tự là phép đối xứng qua tâm vị tự

Xem chi tiết
Lý thuyết hàm số lượng giác Lý thuyết hàm số lượng giác

1. Hàm số y = sin x và hàm số y = cos x

Xem chi tiết
Bài 2 trang 103 SGK Đại số và Giải tích 11 Bài 2 trang 103 SGK Đại số và Giải tích 11

Giải bài 2 trang 103 SGK Đại số và Giải tích 11. Cho cấp số nhân với công bội q.

Xem chi tiết

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng