Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 1 – Đại số và giải tích 11

Bình chọn:
4.4 trên 17 phiếu

Đáp án và lời giải chi tiết Đề thi kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 1 – Đại số và giải tích 11

Đề bài

I. PHẦN TRẮC NGHIỆM

Câu 1: Với những giá trị nào của \(x\) thì giá trị của các hàm số tương ứng sau bằng nhau \(y = \tan 3x\) và \(\tan (\dfrac{\pi }{3} - 2x)\) .          

A. \(x = \dfrac{\pi }{{15}} + k\dfrac{\pi }{5},\,k \in \mathbb{Z}\) 

B.  \(x = \dfrac{\pi }{{15}} + k\pi ,\,k \in \mathbb{Z}\)  

C. \(x = \dfrac{\pi }{{15}} + k\dfrac{\pi }{2},\,k \in \mathbb{Z}\)  

D. \(x = \dfrac{\pi }{5} + k\dfrac{\pi }{5},\,k \in \mathbb{Z}\)

Câu 2: Tìm m để phương trình \(\dfrac{{\cos x + 2\sin x + 3}}{{2\cos x - \sin x + 4}} = m\) có nghiệm.

A. \( - 3 \le m \le 2\)              B. \(m > 2\)

C. \(m \ge  - 3\)                     D. \(\dfrac{2}{{11}} \le m \le 2\)

Câu 3: Nghiệm của phương trình  \(\sin x + \sqrt 3 \cos x = \sqrt 2 \) là:

A. \(x =  - \dfrac{\pi }{{12}} + k2\pi ,\;x = \dfrac{{5\pi }}{{12}} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)

B. \(x =  - \dfrac{\pi }{4} + k2\pi ,\;x = \dfrac{{3\pi }}{4} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)

C. \(x = \dfrac{\pi }{3} + k2\pi ,\;x = \dfrac{{2\pi }}{3} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)

D. \(x =  - \dfrac{\pi }{4} + k2\pi ,\;x =  - \dfrac{{5\pi }}{4} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right).\)

Câu 4 : Chọn mệnh đề đúng:

A. Hàm số \(y = \sin x\) có chu kỳ \(T = \pi \)

B. Hàm số \(y = \cos x\) và hàm số \(y = \tan x\) có cùng chu kỳ.

C. Hàm số \(y = \cot x\) và hàm số \(y = \tan x\) có cùng chu kỳ.

D. Hàm số \(y = \cot x\) có chu kỳ \(T = 2\pi \)

Câu 5: Nghiệm dương bé nhất của phương trình \(2{\sin ^2}x + 5\sin x - 3 = 0\)  là:

A. \(x = \dfrac{\pi }{3}.\)     B. \(x = \dfrac{\pi }{{12}}.\)

C. \(x = \dfrac{\pi }{6}.\)     D. \(x = \dfrac{{5\pi }}{6}.\)

Câu 6: Hàm số nào sau đây có đồ thị không là đường hình sin?

A. \(y = \sin x\)                        B. \(y = \cos x\)

C. \(y = \sin 2x\)                      D. \(y = \cot x\)

Câu 7: Tập xác định của hàm số\(y = f(x) = 2\cot (2x - \dfrac{\pi }{3}) + 1\) là:

A. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{6} + k2\pi ,k \in \mathbb{Z}} \right\}\)   

B. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{6} + \dfrac{{k\pi }}{2},k \in \mathbb{Z}} \right\}\)

C. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{6} + k\pi ,k \in \mathbb{Z}} \right\}\)     

D. \(\mathbb{R}\backslash \left\{ {\dfrac{{5\pi }}{{12}} + \dfrac{{k\pi }}{2},k \in \mathbb{Z}} \right\}\)

Câu 8: Nghiệm của phương trình \(\tan (x - \dfrac{\pi }{2}) = \sqrt 3 \) là:

A. \(x = \dfrac{{5\pi }}{6} + k\pi \).                            

B. \(x = \dfrac{{5\pi }}{6} + k2\pi \).                          

C. \(x = \dfrac{\pi }{6} + k2\pi \).                               

D. \(x = \dfrac{\pi }{6} + k\pi \).

Câu 9: Tập nghiệm của phương trình \(\cos 3x =  - 1\) là:

A. \(\left\{ { - \dfrac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}.\) 

B. \(\left\{ {\pi  + k2\pi |k \in \mathbb{Z}} \right\}.\)

C. \(\left\{ {\dfrac{\pi }{3} + \dfrac{{k2\pi }}{3}|k \in \mathbb{Z}} \right\}.\)       

D. \(\left\{ {\dfrac{{k2\pi }}{3}|k \in \mathbb{Z}} \right\}.\)

Câu 10: Trong các hàm số sau, hàm số nào là hàm số chẵn.

A. \(y = \sin \left| {2016x} \right| + c{\rm{os}}2017x\).    

B. \(y = 2016\cos x + 2017\sin x\).

C. \(y = \cot 2015x - 2016\sin x\). 

D. \(y = \tan 2016x + \cot 2017x\).

Câu 11: Nghiệm của phương trình \(\sin 2x = \dfrac{{\sqrt 2 }}{2}\) là:

A.\(\,x = \dfrac{\pi }{8} + k2\pi ;x = \dfrac{{3\pi }}{8} + k2\pi (k \in Z)\)

B. \(\,x = \dfrac{\pi }{4} + k2\pi ;x = \dfrac{{3\pi }}{4} + k2\pi \,(k \in Z)\)

C.   \(\,x = \dfrac{\pi }{4} + k\pi ;x = \dfrac{{3\pi }}{4} + k\pi (k \in Z)\)

D. \(\,x = \dfrac{\pi }{8} + k\pi ;x = \dfrac{{3\pi }}{8} + k\pi ;k \in Z)\)

Câu 12: Giá trị nhỏ nhất m của hàm số \(y = 3\sin x + 1\) là.

A. m = 4                               B. m = -2 

C. m = 3                               D. m = 1

Câu 13: Tập xác định của hàm số \(y = f(x) = \dfrac{1}{{\sqrt {1 - sinx} }}\)

A. \(\mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\)        

B. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\)                 

C. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\)               

D. \(\phi \)

Câu 14: Giá trị nhỏ nhất của hàm số \(y = {\sin ^2}x - 4\sin x - 5\) là:

A. -9                                     B. 0

C. 9                                      D. -8

Câu 15: Đồ thị hàm số nào dưới đây nhận trục tung làm trục đối xứng?

A. \(y = \sin x - \cos x\).               

B. \(y = 2\sin x\).                          

C. \(y = 2\sin \left( { - x} \right)\).                                     

D. \(y =  - 2\cos x\)

Câu 16: Nghiệm của phương trình \(2{\sin ^2}x + \sin x\cos x - 3{\cos ^2}x = 0\) là.

A. \(x = \dfrac{\pi }{4} + k\pi \); \(x = \arctan ( - \dfrac{3}{2}) + k\pi ,k \in \mathbb{Z}\)

B. \(x = \dfrac{\pi }{4} + k\pi ,k \in \mathbb{Z}\)

C. \(x = \dfrac{\pi }{4} + k\pi \);\(x = \arctan ( - 3) + k\pi ,k \in \mathbb{Z}\)

D. \(x = \arctan ( - \dfrac{3}{2}) + k\pi ,k \in \mathbb{Z}\) 

Câu 17: Phương trình lượng giác nào dưới đây có nghiệm là: \(x = \dfrac{\pi }{6} + k\pi ,k \in \mathbb{Z}.\)

A. \(\cos 2x = \dfrac{{\sqrt 3 }}{2}.\)                          

B. \(\cot x = \sqrt 3 .\)    

C. \(\tan x = \sqrt 3 .\)     

D. \(\sin \left( {x - \dfrac{\pi }{3}} \right) =  - \dfrac{1}{2}\)

Câu 18: Giá trị lớn nhất M  của hàm số \(y = \sin x + \cos x\) là.

A. \(M = 2\)                         

B. \(M = 2\sqrt 2 \)             

C. \(M = 1\)                         

D. \(M = \sqrt 2 \)

Câu 19: Nghiệm của phương trình \(\sin x = \cos x\) là:

A. \(x = \dfrac{\pi }{4} + k2\pi \).                               

B. \(x = \dfrac{\pi }{4} + k\pi \).                                 

C. \(x = \dfrac{\pi }{4}\).    

D. \(x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\).

Câu 20: Đồ thì hình bên là đồ thị của hàm số nào?


A. \(y = \sin x\)                     B. \(y = \cot x\)    

C. \(y = \tan x\)                    D. \(y = \cos x\)           

II. PHẦN TỰ LUẬN

Câu 21: Giải các phương trình sau

a) \(\sin 3x - \cos 2x = 0\)                                             

b) \(\dfrac{{\sin x + \sqrt 3 \cos x}}{{\sin x - \cos \dfrac{\pi }{4}}} = 0\)

Câu 22: Giải phương trình :   \(2{\cos ^2}\left( {\dfrac{\pi }{4} - 2x} \right) + \sqrt 3 \cos 4x = 4{\cos ^2}x - 1\)

Lời giải chi tiết

I. PHẦN TRẮC NGHIỆM

Câu

1

2

3

4

5

6

7

8

9

10

Đáp án

A

D

A

C

C

D

B

A

C

A

Câu

11

12

13

14

15

16

17

18

19

20

Đáp án

D

B

C

D

D

A

B

D

B

D

Câu 1:

Ta có: \(\tan 3x = \tan (\dfrac{\pi }{3} - 2x) \Leftrightarrow 3x = \dfrac{\pi }{3} - 2x + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow 5x = \dfrac{\pi }{3} + k\pi \left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow x = \dfrac{\pi }{{15}} + k\dfrac{\pi }{5}\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án A.

Câu 2:

Ta có: \(\dfrac{{\cos x + 2\sin x + 3}}{{2\cos x - \sin x + 4}} = m \Leftrightarrow \cos x + 2\sin x + 3 = m\left( {2\cos x - \sin x + 4} \right)\)

\( \Leftrightarrow \left( {2m - 1} \right)\cos x - \left( {m + 2} \right)\sin x = 3 - 4m\)

Điều kiện có nghiệm: \({\left( {2m - 1} \right)^2} + {\left( {m + 2} \right)^2} \ge {\left( {3 - 4m} \right)^2}\)

\( \Leftrightarrow 4{m^2} - 4m + 1 + {m^2} + 4m + 4 \ge 9 - 24m + 16{m^2}\)

\( \Leftrightarrow 11{m^2} - 24m + 4 \le 0 \Leftrightarrow \dfrac{2}{{11}} \le m \le 2.\)

Chọn đáp án D.

Câu 3:

Ta có:\(\sin x + \sqrt 3 \cos x = \sqrt 2  \Leftrightarrow 2\sin \left( {x + \dfrac{\pi }{3}} \right) = \sqrt 2  \Leftrightarrow \sin \left( {x + \dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 2 }}{2}\)

\( \Leftrightarrow \sin \left( {x + \dfrac{\pi }{3}} \right) = \sin \dfrac{\pi }{4} \Leftrightarrow \left[ \begin{array}{l}x + \dfrac{\pi }{3} = \dfrac{\pi }{4} + k2\pi \\x + \dfrac{\pi }{3} = \pi  - \dfrac{\pi }{4} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{\pi }{{12}} + k2\pi \\x = \dfrac{{5\pi }}{{12}} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án A.

Câu 4:

+ Hàm số \(y = \sin x,\,y = \cos x\) có chu kỳ là \(T = 2\pi \)

+ Hàm số \(y = \tan x,y = \cot x\) có chu kì là \(T = \pi \)

Chọn đáp án C.

Câu 5:

Ta có: \(2{\sin ^2}x + 5\sin x - 3 = 0 \Leftrightarrow \left( {2\sin x - 1} \right)\left( {\sin x + 3} \right) = 0\)

\( \Rightarrow \sin x = \dfrac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Nghiệm bé nhất của phương trình là \(x = \dfrac{\pi }{6}.\)

Chọn đáp án C.

Câu 6:

Hàm số \(y = \cot x\)có đồ thị không là đường hình sin.

Chọn đáp án D.

Câu 7:

\(y = f(x) = 2\cot (2x - \dfrac{\pi }{3}) + 1 = \dfrac{{2\cos (2x - \dfrac{\pi }{3})}}{{\sin (2x - \dfrac{\pi }{3})}} + 1\)

Tập xác định của hàm số là \(\sin \left( {2x - \dfrac{\pi }{3}} \right) \ne 0 \Leftrightarrow \left( {2x - \dfrac{\pi }{3}} \right) \ne k\pi \;\left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow x \ne \dfrac{\pi }{6} + k\dfrac{\pi }{2}\;\left( {k \in \mathbb{Z}} \right)\;\)
Chọn đáp án D.

Câu 8:

Ta có: \(\tan (x - \dfrac{\pi }{2}) = \sqrt 3  \Leftrightarrow \tan (x - \dfrac{\pi }{2}) = \tan \dfrac{\pi }{3}\)

\( \Leftrightarrow x - \dfrac{\pi }{2} = \dfrac{\pi }{3} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow x = \dfrac{{5\pi }}{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án A.

Câu 9:

Ta có: \(\cos 3x =  - 1 \Leftrightarrow 3x = \pi  + k2\pi \,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow x = \dfrac{\pi }{3} + k\dfrac{{2\pi }}{3}\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án C.

Câu 10:

Ta có: \(y = \sin \left| {2016x} \right| + \cos 2017x = \sin \left| { - 2016x} \right| + \cos \left( { - 2017x} \right)\)

Hàm số \(y = \sin \left| {2016x} \right| + c{\rm{os}}2017x\) là hàm số chẵn.

Chọn đáp án A.

Câu 11:

Ta có: \(\sin 2x = \dfrac{{\sqrt 2 }}{2} \Leftrightarrow \sin 2x = \sin \dfrac{\pi }{4}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = \dfrac{\pi }{4} + k2\pi \\2x = \pi  - \dfrac{\pi }{4} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{8} + k\pi \\x = \dfrac{{3\pi }}{8} + k\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án D.

Câu 12:

Ta có: \(\sin x \in \left[ { - 1;1} \right] \Rightarrow  - 2 \le 3\sin x + 1 \le 4\)

Chọn đáp án B.

Câu 13:

Ta có: \(\sin x \in \left[ { - 1;1} \right] \Rightarrow 1 - \sin x \in \left[ {0;2} \right]\)

Điều kiện xác định: \(1 - \sin x \ne 0 \Leftrightarrow \sin x \ne 1 \Leftrightarrow x \ne k\pi \;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án A.

Câu 14:

Ta có: \(y = {\sin ^2}x - 4\sin x - 5 = \left( {{{\sin }^2}x - 4\sin x + 4} \right) - 9 = {\left( {\sin x - 2} \right)^2} - 9\)

+ \(\sin x \in \left[ { - 1;1} \right] \Rightarrow \sin x - 2 \in \left[ { - 3; - 1} \right] \Leftrightarrow {\left( {\sin x - 2} \right)^2} \in \left[ {1;9} \right]\)

Khi đó \(y \ge 1 - 9 =  - 8\)

Chọn đáp án D.

Câu 15:

Đồ thị hàm số \(y =  - 2\cos x\) nhận trục tung làm trục đối xứng.

Chọn đáp án D.

Câu 16:

Ta có: \(2{\sin ^2}x + \sin x\cos x - 3{\cos ^2}x = 0 \Leftrightarrow \left( {\sin x - \cos x} \right)\left( {2\sin x + 3\cos x} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin x = \cos x\\2\sin x =  - 3\cos x\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x =  - \dfrac{3}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x = \arctan \left( { - \dfrac{3}{2}} \right) + k\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án A.

Câu 17:

Ta có: \(\cot x = \sqrt 3  \Leftrightarrow x = \dfrac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

Câu 18:

Ta có: \(y = \sin x + \cos x = \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right) \Rightarrow y \in \left[ { - \sqrt 2 ;\sqrt 2 } \right]\)

Chọn đáp án D.

Câu 19:

Ta có: \(\sin x = \cos x \Leftrightarrow \tan x = 1 \Leftrightarrow x = \dfrac{\pi }{4} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

Câu 20:

Đồ thị hình bên là của hàm số \(y = \cos x\)

Chọn đáp án D.

II. PHẦN TỰ LUẬN

Câu 21:

\(a)  \sin 3x - \cos 2x = 0 \Leftrightarrow \sin 3x = \cos 2x \Leftrightarrow \sin 3x = \sin \left( {\dfrac{\pi }{2} - 2x} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \dfrac{\pi }{{10}} + k\dfrac{{2\pi }}{5}}\\{x = \dfrac{\pi }{2} + k2\pi }\end{array}} \right.\)

Vậy phương trình có nghiệm: \(x = \dfrac{\pi }{{10}} + k\dfrac{{2\pi }}{5};\,\,x = \dfrac{\pi }{2} + k2\pi \)\(\)

\(b) \dfrac{{\sin x + \sqrt 3 \cos x}}{{\sin x - \cos \dfrac{\pi }{4}}} = 0 \, (1)\)

ĐK: \(\sin x - \cos \dfrac{\pi }{4} \ne 0\)

\(\begin{array}{l}(1) \Leftrightarrow \sin x + \sqrt 3 \cos x = 0 \Leftrightarrow \dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x = 0 \Leftrightarrow \cos \dfrac{\pi }{3}\sin x + \sin \dfrac{\pi }{3}\cos x = 0\\ \Leftrightarrow \sin (x + \dfrac{\pi }{3}) = 0 \Leftrightarrow x = \dfrac{{ - \pi }}{3} + k\pi \end{array}\)

kết hợp với điều kiện

Vậy phương trình có nghiệm: \(x = \dfrac{{ - \pi }}{3} + k\pi \)

Câu 22:

\(2{\cos ^2}\left( {\dfrac{\pi }{4} - 2x} \right) + \sqrt 3 \cos 4x = 4{\cos ^2}x - 1\) \( \Leftrightarrow 1 + \cos \left( {\dfrac{\pi }{2} - 4x} \right) + \sqrt 3 \cos 4x = 4{\cos ^2}x - 1 \Leftrightarrow \sin 4x + \sqrt 3 \cos 4x = 2\left( {2{{\cos }^2}x - 1} \right)\)\(\begin{array}{l} \Leftrightarrow \dfrac{1}{2}\sin 4x + \dfrac{{\sqrt 3 }}{2}\cos 4x = \cos 2x \Leftrightarrow \sin \dfrac{\pi }{6}\sin 4x + \cos \dfrac{\pi }{6}\cos 4x = \cos 2x\\ \Leftrightarrow \cos \left( {4x - \dfrac{\pi }{6}} \right) = \cos 2x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \dfrac{\pi }{{12}} + k\pi }\\{x = \dfrac{\pi }{{36}} + k\dfrac{\pi }{3}}\end{array}} \right.\,\,(k \in \mathbb{Z})\end{array}\)

Vậy phương trình có nghiệm là: \(x = \dfrac{\pi }{{12}} + k\pi ;\,x = \dfrac{\pi }{{36}} + k\dfrac{\pi }{3}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 2 – Đại số và giải tích 11 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 2 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 2 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 3 – Đại số và giải tích 11 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 3 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 3 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 4 – Đại số và giải tích 11 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 4 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 4 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 5 – Đại số và giải tích 11 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 5 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 45 phút (1 tiết) – Chương 1 – Đề số 5 – Đại số và giải tích 11

Xem chi tiết
Lý thuyết cấp số cộng Lý thuyết cấp số cộng

1. Định nghĩa

Xem chi tiết
Lý thuyết phép vị tự Lý thuyết phép vị tự

Phép vị tự biến tâm vị tự thành chính nó Khi k=1, phép vị tự là phép đồng nhất Khi k = -1, phép vị tự là phép đối xứng qua tâm vị tự

Xem chi tiết
Lý thuyết hàm số lượng giác Lý thuyết hàm số lượng giác

1. Hàm số y = sin x và hàm số y = cos x

Xem chi tiết
Bài 2 trang 103 SGK Đại số và Giải tích 11 Bài 2 trang 103 SGK Đại số và Giải tích 11

Giải bài 2 trang 103 SGK Đại số và Giải tích 11. Cho cấp số nhân với công bội q.

Xem chi tiết

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng