Đề kiểm tra 15 phút - Đề số 5 - Chương 5 - Đại số và Giải tích 11

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút - Đề số 5 - Chương 5 - Đại số và Giải tích 11

Đề bài

Câu 1: Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{{x^3}}}{3} + 3{x^2} - 2\) có hệ số góc k = -9, có phương trình là:

A. \(y - 16 =  - 9(x + 3)\)

B. \(y =  - 9(x + 3)\)

C. \(y - 16 =  - 9(x - 3)\)

D.\(y + 16 =  - 9(x + 3)\)

Câu 2: Tìm vi phân của hàm số\(y = {(3x + 1)^{10}}\):

A.\(dy = 10{(3x + 1)^9}dx\)

B. \(dy = 30{(3x + 1)^{10}}dx\)     

C. \(dy = 9{(3x + 1)^{10}}dx\)

D. \(dy = 30{(3x + 1)^9}dx\)

Câu 3: Cho hàm số \(y = {x^3} - 3{x^2}\) có đồ thị (C) . Có bao nhiêu tiếp tuyến của (C) song song đường thẳng \(y = 9x + 10\)?

A.1                      B. 3

C.2                      D.4

Câu 4: Viết phương trình tiếp tuyến của đồ thị hàm số : \(y = 2{x^4} - 4{x^2} + 1\) biết tiếp tuyến song song với đường thẳng \(y = 48x - 1\).

A. \(y = 48x - 9\)

B. \(y = 48x - 7\)

C. \(y = 48x - 10\)

D. \(y = 48x - 79\)

Câu 5: Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 6{x^2} + 11x - 1\) tại điểm có tung độ bằng 5.

A. \(y = 2x + 1;y =  - x + 2;y = 2x - 1\)

B. \(y = 2x + 3;y =  - x + 7;y = 2x - 2\)

C. \(y = 2x + 1;y =  - x + 2;y = 2x - 2\)

D. \(y = 2x + 3;y =  - x + 7;y = 2x - 1\)

Câu 6: Cho hàm số \(y = f(x) = {x^2} + 5x + 4\), có đồ thị (C) . Tại các giao điểm của (C) với trục Ox, tiếp tuyến của (C) có phương trình:

A. \(y = 3x + 3\) và \(y =  - 3x - 12\)

B. \(y = 3x - 3\) và \(y =  - 3x + 12\)

C. \(y =  - 3x + 3\) và \(y = 3x - 12\)

D. \(y = 2x + 3\) và \(y =  - 2x - 12\)

Câu 7: Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) tại giao điểm với trục tung bằng:

A.-2                       B. 2

C. 1                        D. -1

Câu 8: Tìm vi phân của hàm số sau: \(y = \sin 2x + {\sin ^3}x\):

A. \(dy = (\cos 2x + 3{\sin ^2}x\cos x)dx\)

B. \(dy = (2\cos 2x + 3{\sin ^2}x\cos x)dx\)

C. \(dy = (2\cos 2x + {\sin ^2}x\cos x)dx\)

D. \(dy = (\cos 2x + {\sin ^2}x\cos x)dx\)

Câu 9: Hàm số \(y = {\mathop{\rm s}\nolimits} {\rm{inx}}\) có đạo hàm là:

A. \(y' = \cos x\)

B. \(y' =  - \cos x\)

C. \(y' =  - \sin x\)

D. \(y' = \dfrac{1}{{\cos x}}\)

Câu 10: Cho hàm số \(f(x) = \dfrac{{{x^2} - 1}}{{{x^2} + 1}}\). Tập nghiệm của phương trình \(f'(x) = 0\) là

A. \(\left\{ 0 \right\}\)             B. \(\mathbb{R}\)

C. \(\mathbb{R}\backslash \left\{ 0 \right\}\)        D. \(\emptyset \)

Lời giải chi tiết

Câu

1

2

3

4

5

6

7

8

9

10

Đáp án

A

D

C

D

D

A

B

B

A

A

Câu 1: Đáp án A

\(y' = {\left( {\dfrac{{{x^3}}}{3} + 3{x^2} - 2} \right)^\prime } = {x^2} + 6x\)

Tiếp tuyến có hệ số góc k = -9 nên \({x^2} + 6x =  - 9 \Leftrightarrow {x^2} + 6x + 9 = 0 \Leftrightarrow {(x + 3)^2} = 0 \Leftrightarrow x =  - 3\)

\(y( - 3) = \dfrac{{{{( - 3)}^3}}}{3} + 3{( - 3)^2} - 2 = 16\)

Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{{x^3}}}{3} + 3{x^2} - 2\) có hệ số góc k = -9, có phương trình là:

y = -9(x +3) + 16 hay y - 16 = -9(x + 3)

Câu 2: đáp án D

\(dy = d{(3x + 1)^{10}} = {\left( {{{(3x + 1)}^{10}}} \right)^\prime }dx = 30{(3x + 1)^9}dx\)

Câu 3: Đáp án C

\(y' = {\left( {{x^3} - 3{x^2}} \right)^\prime } = 3{x^2} - 6x\)

Tiếp tuyến của đồ thị hàm số song song với đường thẳng \(y = 9x + 10\)nên có hệ số góc là k=9

Hay \(3{x^2} - 6x = 9 \Leftrightarrow 3{x^2} - 6x - 9 = 0 \Leftrightarrow x = 3\)hoặc \(x =  - 1\)

Với x = 3 ta có \(y(3) = {3^3} - {3.3^2} = 0\)

Phương trình tiếp tuyến tương ứng là: y = 9(x – 3)

Với x = -1 ta có \(y( - 1) = {( - 1)^3} - 3.{( - 1)^2} =  - 4\)

Phương trình tiếp tuyến tương ứng là: y = 9(x+1)-4

Vậy có hai phương trình tiếp tuyến thỏa  mãn bài toán

Câu 4: Đáp án D

\(y' = {\left( {2{x^4} - 4{x^2} + 1} \right)^\prime } = 8{x^3} - 8x\)

Tiếp tuyến song song với đường thẳng \(y = 48x - 1\)nên có hệ số góc là k=48

Do đó \(8{x^3} - 8x = 48 \Leftrightarrow 8{x^3} - 8x - 48 = 0 \Leftrightarrow (x - 2)(8{x^2} + 16x - 24) = 0 \Leftrightarrow x - 2 = 0 \Leftrightarrow x = 2\)

Với x = 2 ta có \(y(2) = {2.2^4} - {4.2^2} + 1 = 17\)

Phương trình tiếp tuyến của đồ thị hàm số : \(y = 2{x^4} - 4{x^2} + 1\) biết tiếp tuyến song song với đường thẳng \(y = 48x - 1\)là: y = 48(x – 2) +17 = 48x – 79

Câu 5: Đáp án D

\(y = {x^3} - 6{x^2} + 11x - 1 = 5 \Leftrightarrow {x^3} - 6{x^2} + 11x - 6 = 0 \Leftrightarrow (x - 1)(x - 2)(x - 3) = 0 \Leftrightarrow \)x = 1 hoặc x = 2 hoặc x = 3

\(\begin{array}{l}y' = {\left( {{x^3} - 6{x^2} + 11x - 1} \right)^\prime } = 3{x^2} - 12x + 11\\y'(1) = {3.1^2} - 12.1 + 11 = 2\\y'(2) = {3.2^2} - 12.2 + 11 =  - 1\\y'(3) = {3.3^2} - 12.3 + 11 = 2\end{array}\)

Với x = 1 ta có phương trình tiếp tuyến tương ứng là: y = 2(x – 1) + 5 = 2x +3

Với x = 2 ta có phương trình tiếp tuyến tương ứng là: y = -(x – 2) +5 = - x +7

Với x = 3 ta có phương trình tiếp tuyến tương ứng là: y = 2(x – 3) +5 = 2x – 1

Câu 6: Đáp án A

Trục Ox có phương trình y = 0

Phương trình hoành độ giao điểm của đths với trục hoành là:

\({x^2} + 5x + 4 = 0 \Leftrightarrow x =  - 1\)hoặc \(x =  - 4\)

\(\begin{array}{l}y' = f'(x) = {\left( {{x^2} + 5x + 4} \right)^\prime } = 2x + 5\\y'( - 1) = 3\\y'( - 4) =  - 3\end{array}\)

Với x = -1 tiếp tuyến của (C) có phương trình là: y = 3(x+1) = 3x +3

Với x = -4 tiếp tuyến của (C) có phương trình là: y = -3(x + 4)=-3x -12

Câu 7: Đáp án B

Trục tung có phương trình x = 0

\(\begin{array}{l}y' = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^\prime } = \dfrac{{(x + 1) - (x - 1)}}{{{{(x + 1)}^2}}} = \dfrac{2}{{{{(x + 1)}^2}}}\\y'(0) = 2\end{array}\)

Vậy hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) tại giao điểm với trục tung bằng 2

Câu 8: Đáp án B

\(dy = d\left( {\sin 2x + {{\sin }^3}x} \right) = {\left( {\sin 2x + {{\sin }^3}x} \right)^\prime }dx = \left( {2\cos 2x + 3{{\sin }^2}x\cos x} \right)dx\)

Câu 9: Đáp án A

\(y' = {\left( {{\mathop{\rm s}\nolimits} {\rm{inx}}} \right)^\prime } = \cos x\)

Câu 10: Đáp án A

\(\begin{array}{l}f'(x) = {\left( {\dfrac{{{x^2} - 1}}{{{x^2} + 1}}} \right)^\prime } = \dfrac{{2x({x^2} + 1) - 2x({x^2} - 1)}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \dfrac{{4x}}{{{{\left( {{x^2} + 1} \right)}^2}}}\\f'(0) = \dfrac{{4.0}}{{{{({0^2} + 1)}^2}}} = 0\end{array}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng