Đề kiểm tra 15 phút - Đề số 2 - Chương 5 - Đại số và Giải tích 11

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút - Đề số 2 - Chương 5 - Đại số và Giải tích 11

Đề bài

Câu 1: Cho hàm số \(y = f(x) = \dfrac{x}{{\sqrt {4 - {x^2}} }}\). Tính \({y'}(0)\) bằng:

A. \({y'}(0) = \dfrac{1}{2}\)              B. \({y'}(0) = \dfrac{1}{3}\)

C. \({y'}(0) = 1\)               D. \({y'}(0) = 2\)

Câu 2: Cho \(f(x) = {x5} + {x3} - 2x - 3\). Tính \(f(x) = {f'}(1) + {f'}( - 1) + 4f(0)\)

A.4                            B. 5

C. 6                           D . 7

Câu 3: Cho hàm số \(f(x) = k\sqrt[3]{x} + \sqrt x \). Với giá trị nào của k thì \({f'}(1) = \dfrac{3}{2}\)?

A.k = 1

B. \(k = \dfrac{9}{2}\)

C.  k = - 3

D. k = 3

Câu 4: Đạo hàm của hàm số \(f(x) = \dfrac{1}{{\sqrt x }} - \dfrac{1}{{{x^2}}}\) tại điểm x= 0 là kết quả nào sau đây ?

A.0   

B. 1  

C. 2

D. Không tồn tại

Câu 5: Đạo hàm cấp một của hàm số \(y = {(1 - {x^3})^5}\) là :

A. \(y' = 5{(1 - {x^3})^4}\)

B. \(y' =  - 15{x^2}{(1 - {x^3})^4}\)

C. \(y' =  - 3{(1 - {x^3})^4}\)

D. \(y' =  - 5{(1 - {x^3})^4}\)

Câu 6: Tính đạo hàm của hàm số \(y = {(x + 2)^3}{(x + 3)^2}\):

\(A. y' = 3{({x^2} + 5x + 6)^3} + 2(x + 3){(x + 2)^3}\)

\(B. y' = 2{({x^2} + 5x + 6)^2} + 3(x + 3){(x + 2)^3}\)

\(C. y' = 3({x^2} + 5x + 6) + 2(x + 3)(x + 2)\)

\(D. y' = 3{({x^2} + 5x + 6)^2} + 2(x + 3){(x + 2)^3}\)

Câu 7: Cho hàm số \(y = \dfrac{{2x + 5}}{{{x^2} + 3x + 3}}\). Đạo hàm \(y'\) của hàm số là :

A. \(\dfrac{{2{x^2} + 10x + 9}}{{{{({x^2} + 3x + 3)}^2}}}\)

B. \(\dfrac{{ - 2{x^2} - 10x - 9}}{{{{({x^2} + 3x + 3)}^2}}}\)

C. \(\dfrac{{{x^2} - 2x - 9}}{{{{({x^2} + 3x + 3)}^2}}}\)

D. \(\dfrac{{ - 2{x^2} - 5x - 9}}{{{{({x^2} + 3x + 3)}^2}}}\)

Câu 8: Cho hàm số \(y = {x^3} - 3{x^2} - 9x - 5\). Phương trình \(y' = 0\) có nghiệm là:

A.\(\left\{ { - 1;2} \right\}\)             B. \(\left\{ { - 1;3} \right\}\)

C. \(\left\{ {0;4} \right\}\)               D. \(\left\{ {1;2} \right\}\)

Câu 9: Cho hàm số \(y = 4x - \sqrt x \). Nghiệm của phương trình \(y' = 0\) là:

A. \(x = \dfrac{1}{8}\)                 B. \(x = \sqrt {\dfrac{1}{8}} \)

C. \(x = \dfrac{1}{{64}}\)                D. \(x =  - \dfrac{1}{{64}}\)

Câu 10: Cho hàm số \(y =  - 4{x3} + 4x\). Để \({y'} \ge 0\) thì x nhận các giá trị thuộc tập nào sau đây ?

A. \(\left[ { - \sqrt 3 ;\sqrt 3 } \right]\)

B. \(\left[ { - \dfrac{1}{{\sqrt 3 }};\dfrac{1}{{\sqrt 3 }}} \right]\)

C. \(\left( { - \infty ; - \sqrt 3 } \right] \cup \left[ {\sqrt 3 ; + \infty } \right)\)

D. \(\left( { - \infty ; - \dfrac{1}{{\sqrt 3 }}} \right] \cup \left[ {\dfrac{1}{{\sqrt 3 }}; + \infty } \right)\)

Lời giải chi tiết

Câu

1

2

3

4

5

6

7

8

9

10

Đáp án

A

A

D

D

B

D

B

B

C

B

Câu 1: Đáp án A

\(\begin{array}{l}y = f(x) = \dfrac{x}{{\sqrt {4 - {x^2}} }} \Rightarrow y' = \dfrac{{\sqrt {4 - {x^2}}  - x.\dfrac{1}{{2\sqrt {4 - {x^2}} }}.2x}}{{4 - {x^2}}} = \dfrac{{\left( {4 - {x^2}} \right) - {x^2}}}{{\left( {4 - {x^2}} \right)\sqrt {4 - {x^2}} }} = \dfrac{4}{{\left( {4 - {x^2}} \right)\sqrt {4 - {x^2}} }}\\y'\left( 0 \right) = \dfrac{4}{{4\sqrt 4 }} = \dfrac{1}{2}\end{array}\)

Câu 2: Đáp án A

\(\begin{array}{l}\Delta y = 2(x + \Delta x)(x + \Delta x - 1) - 2x(x - 1) = 2{x^2} + 2x\Delta x - 2x + 2x\Delta x + 2{(\Delta x)^2} - 2\Delta x - 2{x^2} + 2x\\ = 4x\Delta x + 2{(\Delta x)^2} - 2\Delta x\\\frac{{\Delta y}}{{\Delta x}} = \frac{{4x\Delta x + 2{{(\Delta x)}^2} - 2\Delta x}}{{\Delta x}} = 4x + 2\Delta x - 2\end{array}\)

Câu 3: Đáp án D

\(\begin{array}{l}f'(x) = \dfrac{k}{{3\sqrt[3]{{{x^2}}}}} + \dfrac{1}{{2\sqrt x }}\\f'\left( 1 \right) = \dfrac{3}{2} \Leftrightarrow \dfrac{k}{3} + \dfrac{1}{2} = \dfrac{3}{2} \Rightarrow k = 3\\\end{array}\).

Câu 4: Đáp án D

\(f'(x) = \dfrac{{ - 1}}{{2x\sqrt x }} + \dfrac{2}{{{x^3}}}\)      xác định với mọi \(x > 0\)  

suy ra \(f'\left( 0 \right)\) không tồn taị

Câu 5: Đáp án B

\(y' = 5{(1 - {x^3})^4}.( - 3){x^2} =  - 15{x^2}{(1 - {x^3})^4}\) là :

Câu 6: Đáp án D

\(\begin{array}{l}y' = 3{(x + 2)^2}{(x + 3)^2} + {(x + 2)^3}2\left( {x + 3} \right)\\ = 3{\left( {{x^2} + 5x + 6} \right)^2} + 2\left( {x + 3} \right){\left( {x + 2} \right)^3}\end{array}\)

Câu 7: Đáp án B

\(y' = \dfrac{{2\left( {{x^2} + 3x + 3} \right) - \left( {2x + 3} \right)\left( {2x + 5} \right)}}{{{{\left( {{x^2} + 3x + 3} \right)}^2}}} = \dfrac{{ - 2{x^2} - 10x - 9}}{{{{\left( {{x^2} + 3x + 3} \right)}^2}}}\)

Câu 8: Đáp án B

\(\begin{array}{l}y' = 3{x^2} - 6x - 9\\y' = 0 \Leftrightarrow 3{x^2} - 6x - 9 = 0 \Leftrightarrow \left( {x + 1} \right)\left( {x - 3} \right) = 0 \Leftrightarrow x =  - 1\end{array}\)hoặc \(x = 3\)

Câu 9: Đáp án C

\(\begin{array}{l}y' = 4 - \dfrac{1}{{2\sqrt x }}\\y' = 0 \Leftrightarrow 4 - \dfrac{1}{{2\sqrt x }} = 0 \Leftrightarrow x = \dfrac{1}{{64}}\end{array}\).

Câu 10: Đáp án B

\(f'(0) = \mathop {\lim }\limits_{x \to 0} \frac{{f(x) - f(0)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\sqrt {{x^2} + 1}  - 1}}{x}}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 1}  - 1}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{{x^2}\left( {\sqrt {{x^2} + 1}  + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\sqrt {{x^2} + 1}  + 1}} = \frac{1}{2}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng