Đề kiểm tra 15 phút – Chương 2 – Đề số 9 – Đại số và giải tích 11

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 9 – Đại số và giải tích 11

Đề bài

Câu 1: Cho phép thử có không gian mẫu \(\Omega  = \left\{ {1,2,3,4,5,6} \right\}\). Các cặp biến cố không đối nhau là

A. \(A = \left\{ 1 \right\};\,\,\,B = \left\{ {2,3,4,5,6} \right\}\)

B. \(C = \left\{ {1,4,5} \right\};\,\,\,B = \left\{ {2,3,6} \right\}\)

C. \(E = \left\{ {1,4,6} \right\};\,\,\,F = \left\{ {2,3} \right\}\)

D. \(\Omega ;\,\,\emptyset \)

Câu 2: Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau. Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7. Hãy tính xác suất để cả 2 động cơ chạy tốt

A. 0,56                                   B. 0,55

C. 0,58                                    D. 0,50

Câu 3: Một hộp đựng 4 bi xanh và 6 bi đỏ, lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và một bi đỏ là:

A. \(\dfrac{4}{{15}}\)

B. \(\dfrac{6}{{25}}\)

C. \(\dfrac{8}{{25}}\)

D. \(\dfrac{8}{{15}}\)

Câu 4: Gieo 2 con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện trên hai mặt của 2 con súc sắc đó không vượt quá 5 là:

A. \(\dfrac{2}{3}\)

B. \(\dfrac{5}{{18}}\)

C. \(\dfrac{8}{9}\)

D. \(\dfrac{7}{{18}}\)

Câu 5: Một bình chứa 16 viên bi với 7 viên bi trắng, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi không có viên nào đỏ.

A. \(\dfrac{{1}}{{16}}\)

B. \(\dfrac{9}{{40}}\)

C. \(\dfrac{1}{{28}}\)

D. \(\dfrac{1}{{560}}\)

Câu 6: Có 5 nam, 5 nữ xếp thành một hàng dọc. Tính xác suất để nam, nữ đứng cạnh nhau:

A. \(\dfrac{1}{{125}}\)

B. \(\dfrac{1}{{126}}\)

C. \(\dfrac{1}{{36}}\)

D. \(\dfrac{{13}}{{36}}\)

Câu 7: Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:

A. 2                B. 3

C. 4                D. 5

Câu 8: Trên giá sách có 4 quyển sách Toán, 3 quyển sách Lý, 2 quyển sách Hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển sách lấy ra đều là môn Toán

A. \(\dfrac{2}{7}\)             B. \(\dfrac{1}{{21}}\)

C. \(\dfrac{{37}}{{42}}\)            D. \(\dfrac{5}{{42}}\)

Câu 9: Một lớp có 20 học sinh nam và 18 học sinh nữ. Chọn ngẫu nhiên một học sinh. Tính xác suất chọn được một học sinh nữ

A. \(\dfrac{9}{{19}}\)                 B. \(\dfrac{{10}}{{19}}\)

C. \(\dfrac{1}{{38}}\)                  D. \(\dfrac{{19}}{9}\)

Câu 10: Sắp xếp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 2 quyển sách cùng một môn nằm cạnh nhau:

A. \(\dfrac{1}{5}\)                      B. \(\dfrac{9}{{10}}\)

C. \(\dfrac{1}{{20}}\)                      D. \(\dfrac{2}{5}\)

 

Lời giải chi tiết

Câu

1

2

3

4

5

6

7

8

9

10

Đáp án

C

A

D

B

A

B

C

B

A

B

Câu 1:

Cặp biến cố không đối nhau là \(E = \left\{ {1,4,6} \right\};\,\,\,F = \left\{ {2,3} \right\}\)

Chọn đáp án C.

Câu 2:

Xác suất để hai động cơ cùng chạy tốt là \(0,8.0,7 = 0,56\)

Chọn đáp án A.

Câu 3:

Không gian mẫu là \(C_{10}^2\)

Xác suất để có một bi xanh, 1 bi đỏ là \(C_4^1C_6^1\)

Xác suất cần tìm là \(\dfrac{8}{{15}}\)

Chọn đáp án D.

Câu 4:

Không gian mẫu là 36

Gieo 2 con súc sắc được các chấm \(\left\{ {\left( {1;1} \right),\left( {1;2} \right),\left( {1;3} \right),\left( {1;4} \right),\left( {2;1} \right),\left( {3;1} \right),\left( {4;1} \right)} \right\}\)

Câu 5:

Không gian mẫu là \(C_{16}^3\)

Số cách lấy 3 viên bi không có đỏ là \(C_7^3\)

Xác suất cần tìm là: \(P = \dfrac{{C_7^3}}{{C_{16}^3}} = \dfrac{1}{{16}}\)

Chọn đáp án A

Câu 6:

Xét 2 bạn nam khi bạn nam hoặc bạn nữ đứng đầu.

+ Xếp 5 nam vào 5 vị trí cố định có 5! Cách

+ Xếp 5 nữ vào 5 vị trí có định  trống xem kẽ nam có 5! Cách

Vậy xác suất cần tìm là là \(\dfrac{{2.5!.5!}}{{10!}} = \dfrac{1}{{126}}\)

Chọn đáp án B.

Câu 7:

Phần tử trong biến cố A là  \(\left\{ {\left( {1;2;3} \right),\left( {1;3;4} \right)} \right\}\)

Chọn đáp án A.

Câu 8:

Không gian mẫu là 84.

Ngẫu nhiên 3 quyển sách đều toán là 4

Xác suất cần tìm là \(\dfrac{1}{{21}}\)

Chọn đáp án B.

Câu 9:

Không gian mẫu là 38

Chọn 1 học sinh nữa là 18

Xác suất cần tìm là \(\dfrac{9}{{19}}\)

Chọn đáp án A.

Câu 10:

Sắp xếp 3 quyển sách toán và 3 quyển sách lý lên cùng một kệ có \(n\left( \Omega  \right) = 6!\)

Đặt 2 nhóm sách lên kệ có 2! cách, mỗi cách sắp xếp toán có 3! cách, sắp xếp 3 quyển sách lý có 3! cách.

Vậy biến cố có \(2!.3!.3!\) cách

Xác suất cần tìm là: \(\dfrac{{2!.3!.3!}}{{6!}} = \dfrac{1}{{10}}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Đề kiểm tra 15 phút – Chương 2 – Đề số 8 – Đại số và giải tích 11 Đề kiểm tra 15 phút – Chương 2 – Đề số 8 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 8 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 15 phút – Chương 2 – Đề số 7 – Đại số và giải tích 11 Đề kiểm tra 15 phút – Chương 2 – Đề số 7 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 7 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 15 phút – Chương 2 – Đề số 6 – Đại số và giải tích 11 Đề kiểm tra 15 phút – Chương 2 – Đề số 6 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 6 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 15 phút – Chương 2 – Đề số 5 – Đại số và giải tích 11 Đề kiểm tra 15 phút – Chương 2 – Đề số 5 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 5 – Đại số và giải tích 11

Xem chi tiết
Lý thuyết cấp số cộng Lý thuyết cấp số cộng

1. Định nghĩa

Xem chi tiết
Lý thuyết phép vị tự Lý thuyết phép vị tự

Phép vị tự biến tâm vị tự thành chính nó Khi k=1, phép vị tự là phép đồng nhất Khi k = -1, phép vị tự là phép đối xứng qua tâm vị tự

Xem chi tiết
Lý thuyết hàm số lượng giác Lý thuyết hàm số lượng giác

1. Hàm số y = sin x và hàm số y = cos x

Xem chi tiết
Bài 3 trang 35 SGK Hình học 11 Bài 3 trang 35 SGK Hình học 11

Giải bài 3 trang 35 SGK Hình học 11. Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x - y + 1 = 0. Để phép tịnh tiến theo vectơ v biến d thành chính nó

Xem chi tiết

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng