Đề kiểm tra 15 phút – Chương 2 – Đề số 7 – Đại số và giải tích 11

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 7 – Đại số và giải tích 11

Đề bài

Câu 1: Trong khai triển \({(2a - b)^5}\), hệ số của số hạng thứ 3 bằng:

A. -80                                     B. 80

C. -10                                     D. 10

Câu 2: Một đội văn nghệ có 15 người gồm 10 nam và 5 nữ. Hỏi có bao nhiêu cách lập một nhóm đồng ca gồm 8 người biết rằng nhóm đó có ít nhất 3 nữ.

A. 3690                                  B. 3120

C. 3400                                   D. 3143

Câu 3: Trong khai triển nhị thức \({(a + 2)^{n + 6}},n \in \mathbb{N}\), có tất cả 17 số hạng. Vậy n bằng

A. 17                                      B. 11

C. 10                                       D. 12

Câu 4: Trong khai triển \({(2x - 5y)^8}\), hệ số của số hạng chứa \({x^5}.{y^3}\)là:

A. -22400                               B. -40000

C. -8960                                 D. -4000

Câu 5: Trong khai triển \({(x + \dfrac{8}{{{x^2}}})^9}\),số hạng không chứa \(x\) là

A. 4308                                  B. 86016

C. 84                                       D. 43008

Câu 6: Cho tập \(A = \left\{ {0,1,2,3,4,5,6} \right\}.\)Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau và chia hết cho 5

A. 660                                    B. 432

C. 679                                     D. 523

Câu 7: Hệ số của \({x^3}{y^3}\) trong khai triển \({(1 + x)^6}{(1 + y)^6}\) là:

A. 20                                       B. 800

C. 36                                       D. 400

Câu 8: Số hạng chính giữa trong khai triển \({(3x + 2y)^4}\) là:

A. \(C_4^2{x^2}{y^2}\)

B. \({(3x)^2}{(2y)^2}\)

C. \(6C_4^2{x^2}{y^2}\)

D. \(36C_4^2{x^2}{y^2}\)

Câu 9: Tìm hệ số của số hạng chứa \({x^{26}}\)trong khai triển nhị thức Newton của \({\left( {\dfrac{1}{{{x^4}}} + {x^7}} \right)^n}\), biết \(C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n = {2^{20}} - 1\)

A. 210                                    B. 213

C. 414                                     D. 213

Câu 10: Tổng \(T = C_n^0 + C_n^1 + C_n^2 + C_n^3 + ... + C_n^n\) bằng

A. \(T = {2^n}\)

B. \(T = {2^n} - 1\)

C. \(T = {2^n} + 1\)

D. \(T = {4^n}\)

Lời giải chi tiết

Câu

1

2

3

4

5

6

7

8

9

10

Đáp án

B

A

C

A

D

A

D

D

A

A

Câu 1:

Ta có: \({(2a - b)^5} = \sum\limits_5^{k = 0} {C_5^k} {2^{5 - k}}{a^{5 - k}}{\left( { - b} \right)^k} = {2^5}C_5^0{a^5} - {2^4}C_5^1{a^4}b + {2^3}C_5^2{a^3}{b^2} -  \ldots \)

Khi đó hệ số của số hạng thứ 3 là 80

Chọn đáp án D.

Câu 2:

+ 5 nam, 3 nữ có 2520 cách

+ 4 nam, 4 nữa có 1050 cách

+ 3 nam, 5 nữ có 120 cách

Vậy tổng có 3690 cách.

Chọn đáp án A.

Câu 3:

Khi triển nhị thức có 17 số hạng khi \(n + 6 = 16 \Leftrightarrow n = 10\)

Chọn đáp án C.

Câu 4:

Ta có: \({(2x - 5y)^8} = \sum\limits_8^k {C_8^k{2^{8 - k}}{x^{8 - k}}{{\left( { - 5} \right)}^k}{y^k}} \)

Hệ số của số hạng chứa \({x^5}.{y^3}\) là \({2^5}C_8^3.{\left( { - 5} \right)^3} =  - 22400\)

Chọn đáp án A.

Câu 5:

Ta có: \({(x + \dfrac{8}{{{x^2}}})^9} = \sum\limits_9^k {C_9^k{x^{9 - k}}{8^k}{x^{ - 2k}}}  = \sum\limits_9^k {{8^k}C_9^k{x^{9 - 3k}}} \)

Số hạng không chứa x có hệ số là \({8^3}C_9^3 = 43008\)

Chọn đáp án D.

Câu 6:

Gọi số có 5 chữ số có dạng là \(\overline {abcde} \)

TH1: \(\overline {abcd0} \)

+ a có 6 cách chọn

+ b có 5 cách chọn.

+ c có 4 cách chọn.

+ d có 3 cách chọn.

\( \Rightarrow \) Có 360 cách

TH2: \(\overline {abcd5} \)

+ a có 5 cách chọn.

+ b có 5 cách chọn.

+ c có 4 cách chọn.

+ d có 3 cách chọn.

\( \Rightarrow \) Có 300 cách

Vậy tổng có 660

Chọn đáp án A

Câu 7:

Ta có: \({(1 + x)^6}{(1 + y)^6} = \sum\limits_6^{k = 0} {C_6^k{x^k}} \sum\limits_6^{i = 0} {C_6^i{y^i}} \)

Hệ số của số hạng chứa  là \({\left( {C_6^3} \right)^2} = 400\)

Chọn đáp án D.

Câu 8:

Ta có: \({(3x + 2y)^4} = \sum\limits_4^k {C_4^k{3^{4 - k}}{x^{4 - k}}{2^k}{y^k}} \)

Số hạng chính giữa là: \(C_4^2{3^2}{2^2}{x^2}{y^2}\)

Chọn đáp án D.

Câu 9:

Ta có: \({\left( {1 + x} \right)^{2n + 1}} = \sum\limits_{2n + 1}^k {C_{2n + 1}^k} {x^k} \Rightarrow {2^{2n}} = C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 +  \ldots  + C_{2n + 1}^n\)

Khi đó ta có: \(n = 10\)

Ta có: \({\left( {\dfrac{1}{{{x^4}}} + {x^7}} \right)^n} = \sum\limits_{10}^k {C_{10}^k{x^{ - 4\left( {10 - k} \right)}}} {x^{7k}} = \sum\limits_{10}^k {C_{10}^k{x^{11k - 40}}} \)

Hệ số của số hạng chứa \({x^{26}}\) là \(C_{10}^6 = 210\)

Chọn đáp án A.

Câu 10:

Ta có: \({\left( {1 + x} \right)^n} = \sum\limits_n^{k = 0} {C_n^k{x^k}}  = C_n^0 + C_n^1x +  \ldots  + C_n^n{x^n}\)

\( \Rightarrow {2^n} = C_n^0 + C_n^1 +  \ldots  + C_n^n\)

Chọn đáp án A.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Đề kiểm tra 15 phút – Chương 2 – Đề số 8 – Đại số và giải tích 11 Đề kiểm tra 15 phút – Chương 2 – Đề số 8 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 8 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 15 phút – Chương 2 – Đề số 9 – Đại số và giải tích 11 Đề kiểm tra 15 phút – Chương 2 – Đề số 9 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 9 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 15 phút – Chương 2 – Đề số 6 – Đại số và giải tích 11 Đề kiểm tra 15 phút – Chương 2 – Đề số 6 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 6 – Đại số và giải tích 11

Xem chi tiết
Đề kiểm tra 15 phút – Chương 2 – Đề số 5 – Đại số và giải tích 11 Đề kiểm tra 15 phút – Chương 2 – Đề số 5 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 5 – Đại số và giải tích 11

Xem chi tiết
Lý thuyết cấp số cộng Lý thuyết cấp số cộng

1. Định nghĩa

Xem chi tiết
Lý thuyết phép vị tự Lý thuyết phép vị tự

Phép vị tự biến tâm vị tự thành chính nó Khi k=1, phép vị tự là phép đồng nhất Khi k = -1, phép vị tự là phép đối xứng qua tâm vị tự

Xem chi tiết
Lý thuyết hàm số lượng giác Lý thuyết hàm số lượng giác

1. Hàm số y = sin x và hàm số y = cos x

Xem chi tiết
Bài 2 trang 103 SGK Đại số và Giải tích 11 Bài 2 trang 103 SGK Đại số và Giải tích 11

Giải bài 2 trang 103 SGK Đại số và Giải tích 11. Cho cấp số nhân với công bội q.

Xem chi tiết

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng