Bài 7 trang 55 SBT Hình học 12 Nâng cao


Giải bài 7 trang 55 sách bài tập Hình học 12 Nâng cao. Cho hình chóp S.ABCD, đáy ABCD ...

Lựa chọn câu để xem lời giải nhanh hơn

Cho hình chóp S.ABCD, đáy ABCD là tứ giác có hai đường chéo vuông góc với nhau tại H và SH là đường cao của hình chóp đã cho.

LG 1

Chứng minh rằng bốn tâm mặt cầu ngoại tiếp các hình chóp S.HAB, S.HBC, S.HCD, S.HDA là bốn đỉnh của một hình chữ nhật.

Lời giải chi tiết:

Gọi I1 là trung điểm của AB và O1 là tâm mặt cầu ngoại tiếp hình chóp S.ABH thì \({I_1}{O_1}// SH\) và \({I_1}{O_1} = {1 \over 2}SH.\)

Tương tự như trên, nếu \({I_2},{I_3},{I_4}\) thứ tự là trung điểm của BC, CD, DA và \({O_2},{O_3},{O_4}\) thứ tự là tâm của mặt cầu ngoại tiếp các hình chóp S.HBC, S.HCD, S.HDA thì

\(\eqalign{  & {I_2}{O_2} = {1 \over 2}SH,{I_3}{O_3} = {1 \over 2}SH,  \cr  & {I_4}{O_4} = {1 \over 2}SH, \cr} \)

và \({I_2}{O_2},{I_3}{O_3},{I_4}{O_4}\) cùng song song với SH.

Dễ thấy \({I_1}{I_2}//{O_1}{O_2}\) và \({I_1}{I_2}//AC,\)

             \({I_2}{I_3}//{O_2}{O_3}\) và \({I_2}{I_3}//BD,\)

             \({I_3}{I_4}//{O_3}{O_4}\) và \({I_3}{I_4}//AC,\)

             \({I_4}{I_1}//{O_4}{O_1}\) và \({I_4}{I_1}//BD.\)

Kết hợp với \(AC \bot BD,\) ta có \({O_1}{O_2}{O_3}{O_4}\) là hình chữ nhật.

LG 2

Gọi H1, H2, H3, H4 là hình chiếu của H lần lượt trên AB, BC, CD, DA . Chứng minh rằng hình chóp S. H1H2H3H4 có mặt cầu ngoại tiếp. Tính diện tích của thiết diện của mặt cầu ấy khi cắt bởi mp(ABCD) nếu biết H1H3 =a,\(\widehat {BAC} = \alpha ,\widehat {BDC} = \beta \)

Lời giải chi tiết:

Dễ thấy  \(\widehat {H{H_1}{H_2}} = \widehat {HB{H_2}} = \widehat {HBC},\)

              \(\widehat {H{H_1}{H_4}} = \widehat {HA{H_4}} = \widehat {HAD},\)

              \(\widehat {H{H_3}{H_2}} = \widehat {HC{H_2}} = \widehat {HCB},\)

              \(\widehat {H{H_3}{H_4}} = \widehat {HD{H_4}} = \widehat {HDA}\)

Từ đó

\(\widehat {H{H_1}{H_2}} + \widehat {H{H_1}{H_4}} + \widehat {H{H_3}{H_2}} + \widehat {H{H_3}{H_4}}\)

\(= \widehat {HBC} + \widehat {HCB} + \widehat {HAD} + \widehat {HDA} = {180^0}\)

Vậy \({H_1}{H_2}{H_3}{H_4}\) là tứ giác nội tiếp đường tròn.

Từ đó hình chóp S. \({H_1}{H_2}{H_3}{H_4}\) có mặt cầu ngoại tiếp.

Diện tích thiết diện của hình cầu đó và mặt phẳng (ABCD) là diện tích hình tròn ngoại tiếp tứ giác \({H_1}{H_2}{H_3}{H_4}\).

Vì \(\widehat {BAC} = \alpha ,\widehat {BDC} = \beta \)  nên \(\widehat {{H_1}{H_4}{H_3}} = \alpha  + \beta \). Khi ấy \({{{H_1}{H_3}} \over {\sin (\alpha  + \beta )}} = 2R\) (R là bán kính đường tròn ngoại tiếp tứ giác \({H_1}{H_2}{H_3}{H_4}\)), từ đó \(R = {a \over {2\sin (\alpha  + \beta )}}.\)

Vậy diện tích hình thu được là

\(4\pi {R^2} = {{\pi {a^2}} \over {{{\sin }^2}(\alpha  + \beta )}}.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Mặt cầu, khối cầu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.