Bài 7 trang 55 SBT Hình học 12 Nâng cao>
Giải bài 7 trang 55 sách bài tập Hình học 12 Nâng cao. Cho hình chóp S.ABCD, đáy ABCD ...
Cho hình chóp S.ABCD, đáy ABCD là tứ giác có hai đường chéo vuông góc với nhau tại H và SH là đường cao của hình chóp đã cho.
LG 1
Chứng minh rằng bốn tâm mặt cầu ngoại tiếp các hình chóp S.HAB, S.HBC, S.HCD, S.HDA là bốn đỉnh của một hình chữ nhật.
Lời giải chi tiết:
Gọi I1 là trung điểm của AB và O1 là tâm mặt cầu ngoại tiếp hình chóp S.ABH thì \({I_1}{O_1}// SH\) và \({I_1}{O_1} = {1 \over 2}SH.\)
Tương tự như trên, nếu \({I_2},{I_3},{I_4}\) thứ tự là trung điểm của BC, CD, DA và \({O_2},{O_3},{O_4}\) thứ tự là tâm của mặt cầu ngoại tiếp các hình chóp S.HBC, S.HCD, S.HDA thì
\(\eqalign{ & {I_2}{O_2} = {1 \over 2}SH,{I_3}{O_3} = {1 \over 2}SH, \cr & {I_4}{O_4} = {1 \over 2}SH, \cr} \)
và \({I_2}{O_2},{I_3}{O_3},{I_4}{O_4}\) cùng song song với SH.
Dễ thấy \({I_1}{I_2}//{O_1}{O_2}\) và \({I_1}{I_2}//AC,\)
\({I_2}{I_3}//{O_2}{O_3}\) và \({I_2}{I_3}//BD,\)
\({I_3}{I_4}//{O_3}{O_4}\) và \({I_3}{I_4}//AC,\)
\({I_4}{I_1}//{O_4}{O_1}\) và \({I_4}{I_1}//BD.\)
Kết hợp với \(AC \bot BD,\) ta có \({O_1}{O_2}{O_3}{O_4}\) là hình chữ nhật.
LG 2
Gọi H1, H2, H3, H4 là hình chiếu của H lần lượt trên AB, BC, CD, DA . Chứng minh rằng hình chóp S. H1H2H3H4 có mặt cầu ngoại tiếp. Tính diện tích của thiết diện của mặt cầu ấy khi cắt bởi mp(ABCD) nếu biết H1H3 =a,\(\widehat {BAC} = \alpha ,\widehat {BDC} = \beta \)
Lời giải chi tiết:
Dễ thấy \(\widehat {H{H_1}{H_2}} = \widehat {HB{H_2}} = \widehat {HBC},\)
\(\widehat {H{H_1}{H_4}} = \widehat {HA{H_4}} = \widehat {HAD},\)
\(\widehat {H{H_3}{H_2}} = \widehat {HC{H_2}} = \widehat {HCB},\)
\(\widehat {H{H_3}{H_4}} = \widehat {HD{H_4}} = \widehat {HDA}\)
Từ đó
\(\widehat {H{H_1}{H_2}} + \widehat {H{H_1}{H_4}} + \widehat {H{H_3}{H_2}} + \widehat {H{H_3}{H_4}}\)
\(= \widehat {HBC} + \widehat {HCB} + \widehat {HAD} + \widehat {HDA} = {180^0}\)
Vậy \({H_1}{H_2}{H_3}{H_4}\) là tứ giác nội tiếp đường tròn.
Từ đó hình chóp S. \({H_1}{H_2}{H_3}{H_4}\) có mặt cầu ngoại tiếp.
Diện tích thiết diện của hình cầu đó và mặt phẳng (ABCD) là diện tích hình tròn ngoại tiếp tứ giác \({H_1}{H_2}{H_3}{H_4}\).
Vì \(\widehat {BAC} = \alpha ,\widehat {BDC} = \beta \) nên \(\widehat {{H_1}{H_4}{H_3}} = \alpha + \beta \). Khi ấy \({{{H_1}{H_3}} \over {\sin (\alpha + \beta )}} = 2R\) (R là bán kính đường tròn ngoại tiếp tứ giác \({H_1}{H_2}{H_3}{H_4}\)), từ đó \(R = {a \over {2\sin (\alpha + \beta )}}.\)
Vậy diện tích hình thu được là
\(4\pi {R^2} = {{\pi {a^2}} \over {{{\sin }^2}(\alpha + \beta )}}.\)
Loigiaihay.com
- Bài 8 trang 55 SBT Hình học 12 Nâng cao
- Bài 9 trang 55 SBT Hình học 12 Nâng cao
- Bài 10 trang 55 SBT Hình học 12 Nâng cao
- Bài 11 trang 55 SBT Hình học 12 Nâng cao
- Bài 12 trang 56 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao