
Đề bài
Trong số các hình chóp tam giác đều ngoại tiếp một mặt cầu bán kính r cho trước, tìm hình chóp có diện tích toàn phần nhỏ nhất.
Lời giải chi tiết
Kí hiệu cạnh đáy của hình chóp là a, chiều cao là h, thể tích khối chóp là V, diện tích toàn phần là Stp thì \(r = {{3V} \over {{S_{tp}}}}\), tức là \({S_{tp}} = {{3V} \over r}\). Vậy Stp nhỏ nhất khi và chỉ khi V nhỏ nhất.
Mặt khác, cũng từ hệ thức \({S_{tp}} = {{3V} \over r}\), ta có hệ thức liên hệ giữa a, h và r là
\(\eqalign{ & r = {{ah} \over {a + \sqrt {{a^2} + 12{h^2}} }}\;\;\;\;(1) \cr & \left( {V = {1 \over 3}.{{{a^2}\sqrt 3 } \over 4}.h = {{\sqrt 3 } \over {12}}{a^2}.h} \right). \cr} \)
Gọi M là trung diểm của BC và đặt \(\widehat {SMH}\) =\(\varphi \) (đó là góc giữa mp(SBC) và mp(ABC), cũng là góc giữa mặt bên và mặt đáy của hình chóp). Khi ấy
\(h = {{a\sqrt 3 } \over 6}\tan \varphi \;\;\;\;(2)\)
Thay (2) vào (1), ta có \(a = {{6r(\cos \varphi + 1)} \over {\sqrt 3 \sin \varphi }},\) từ đó thay vào (2), ta có \(h = {{r(\cos \varphi + 1)} \over {\cos \varphi }}\)
Suy ra \({a^2} = 12{r^2}{{1 + \cos \varphi } \over {1 - \cos \varphi }},\)
Vậy
\(\eqalign{ V& = {{\sqrt 3 } \over {12}}.12{r^2}.{{1 + \cos \varphi } \over {1 - \cos \varphi }}.r.{{1 + \cos \varphi } \over {\cos \varphi }} \cr & = \sqrt 3 .{r^3}{{{{(1 + \cos \varphi )}^2}} \over {{\rm{cos}}\varphi {\rm{(1 - cos}}\varphi {\rm{)}}}} = \sqrt 3 .{r^3}{{{{(1 + t)}^2}} \over {t(1 - t)}} \cr} \)
với \(0<t=cos\varphi <1\).
Xét hàm số \(f(t) = {{{{(1 + t)}^2}} \over {t(1 - t)}},0 < t < 1,\) thì V nhỏ nhất khi và chỉ khi f(t) nhỏ nhất.
Ta có:
\(\eqalign{
f'(t) &= {{2\left( {1 + t} \right)t\left( {1 - t} \right) - {{\left( {1 + t} \right)}^2}\left( {1 - 2t} \right)} \over {{t^2}{{\left( {1 - t} \right)}^2}}} \cr
& = {{2\left( {t - {t^3}} \right) - \left( {1 - 3{t^2} - 2{t^3}} \right)} \over {{t^2}{{\left( {1 - t} \right)}^2}}} \cr
& = {{3{t^2} + 2t - 1} \over {{t^2}{{\left( {1 - t} \right)}^2}}} \cr} \)
\(f'(t) = 0 \Leftrightarrow t = {1 \over 3}.\)
Xét bảng biến thiên sau
Vậy f(t) đạt giá trị nhỏ nhất khi và chỉ khi \(t = {1 \over 3}\), tức là \(\cos \varphi = {1 \over 3}.\)
Khi đó h=4r, \(\tan \varphi = 2\sqrt 2 ,\) từ đó \(a = 2r\sqrt 6 .\)
Vậy khi \(a = 2r\sqrt 6 \), \(h=4r\) thì diện tích toàn phần của hình chóp đạt giá trị nhỏ nhất.
Loigiaihay.com
Giải bài 18 trang 56 sách bài tập Hình học 12 Nâng cao. Cho hình chóp S.ABC...
Giải bài 19 trang 57 sách bài tập Hình học 12 Nâng cao. Cho tam giác ABC vuông ở A, BC=2a,...
Giải bài 16 trang 56 sách bài tập Hình học 12 Nâng cao. Trong số các hình chóp tam giác đều nội ...
Giải bài 15 trang 56 sách bài tập Hình học 12 Nâng cao. Trong số các hình hộp nội tiếp một mặt cầu bán kính R ...
Giải bài 14 trang 56 sách bài tập Hình học 12 Nâng cao. Cho đường tròn đường kính AB=2R ...
Giải bài 13 trang 56 sách bài tập Hình học 12 Nâng cao. Cho mặt cầu tâm O bán kính R và A ...
Giải bài 12 trang 56 sách bài tập Hình học 12 Nâng cao. Cho hai đường thẳng chéo nhau d1, d2 ...
Giải bài 11 trang 55 sách bài tập Hình học 12 Nâng cao. Cho hai tia Ax, By chéo nhau ...
Giải bài 10 trang 55 sách bài tập Hình học 12 Nâng cao. Cho hình chóp S.ABCD...
Giải bài 9 trang 55 sách bài tập Hình học 12 Nâng cao. Chứng minh rằng nếu tứ diện ABCD có tính chất...
Giải bài 8 trang 55 sách bài tập Hình học 12 Nâng cao. Cho hình chóp S.ABC có ...
Giải bài 7 trang 55 sách bài tập Hình học 12 Nâng cao. Cho hình chóp S.ABCD, đáy ABCD ...
Giải bài 6 trang 54 sách bài tập Hình học 12 Nâng cao. Cho hình chóp tứ giác đều S.ABCD ...
Giải bài 5 trang 54 sách bài tập Hình học 12 Nâng cao. Cho tam giác đều ABC cạnh a...
Giải bài 4 trang 54 sách bài tập Hình học 12 Nâng cao. Cho hình lăng trụ đứng có chiều cao h không đổi, ...
Giải bài 3 trang 54 sách bài tập Hình học 12 Nâng cao. Cho tam giác đều ABC cạnh a. ..
Giải bài 2 trang 54 sách bài tập Hình học 12 Nâng cao. Cho hai đường tròn (O;R) và (O’;R’) ...
Giải bài 1 trang 54 sách bài tập Hình học 12 Nâng cao. Cho tứ diện ABCD, biết AB=BC=AC=BD=a, AD=b, ...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: