Bài 15 trang 56 SBT Hình học 12 Nâng cao


Giải bài 15 trang 56 sách bài tập Hình học 12 Nâng cao. Trong số các hình hộp nội tiếp một mặt cầu bán kính R ...

Lựa chọn câu để xem lời giải nhanh hơn

Trong số các hình hộp nội tiếp một mặt cầu bán kính R cho trước, tìm hình hộp thỏa mãn một trong các tính chất sau:

LG 1

Thể tích hình hộp đạt giá trị lớn nhất

Lời giải chi tiết:

Trước hết, ta nhận xét rằng hình hộp nội tiếp mặt cầu phải là hình hộp chữ nhật.

Từ đó, nếu kí hiệu ba kích thước của hình hộp đó là x, y, z thì \({x^2} + {y^2} + {z^2} = 4{R^2}\)

Thể tích khối hộp chữ nhật là V = xyz, từ đó  \({V^2} = {x^2}{y^2}{z^2}.\)

Vậy V đạt giá trị lớn nhất khi và chỉ khi \({x^2} = {y^2} = {z^2} = {{4{R^2}} \over 3}\) hay \(x = y = z = {{2R} \over {\sqrt 3 }},\) tức hình hộp đó là hình lập phương với cạnh bằng \({{2R} \over {\sqrt 3 }}\)

LG 2

Tổng độ dài các cạnh của hình hộp đạt giá trị lớn nhất.

Lời giải chi tiết:

Tổng độ dài các cạnh của hình hộp là T=4(x+y+z), từ đó

\({T^2} = 16{(x + y + z)^2} \)

\(\le 16.3({x^2} + {y^2} + {z^2}) \)

\(= 192{R^2}\)

Như vậy, tổng độ dài các cạnh của hình hộp đạt giá trị lớn nhất khi và chỉ khi \(x = y = z = {{2R} \over {\sqrt 3 }}\) hay hình hộp đó là hình lập phương có cạnh bằng \({{2R} \over {\sqrt 3 }}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Mặt cầu, khối cầu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.