Bài 1 trang 15 SGK Hình học 11


Giải bài 1 trang 15 SGK Hình học 11. Trong mặt phẳng tọa độ Oxy cho điểm A(-1;3) và đường thẳng d có phương trình x-2y + 3 = 0. Tìm ảnh của A và d qua phép đối xứng tâm O.

Đề bài

Trong mặt phẳng tọa độ \(Oxy\) cho điểm \(A(-1;3)\) và đường thẳng \(d\) có phương trình \(x-2y + 3 = 0\). Tìm ảnh của \(A\) và \(d\) qua phép đối xứng tâm \(O\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Gọi A' là ảnh của A qua phép đối xứng tâm O, khi đó O là trung điểm của AA' \( \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = 2{x_O} - {x_A}\\{y_{A'}} = 2{y_O} - {y_A}\end{array} \right.\)

Tìm ảnh của đường thẳng d qua phép đối xứng tâm O.

Cách 1:

Bước 1: Lấy hai điểm B, C bất kì thuộc đường thẳng d.

Bước 2: Xác định ảnh B'; C' của B;C qua phép đối xứng tâm O.

Bước 3: Viết phương trình đường thẳng B'C'; khi đó B'C' chính là ảnh của đường thẳng d qua phép đối xứng tâm O.

Cách 2:

Bước 1: Ảnh của d qua phép đối xứng tâm O là đường thẳng song song với d, suy ra dạng phương trình đường thẳng d'.

Bước 2: Lấy một điểm B bất kì thuộc d, tìm ảnh B' của điểm B qua phép đối xứng tâm O.

Bước 3: Thay tọa độ điểm B' vào phương trình đường thẳng d' và suy ra phương trình đường thẳng d'.

Lời giải chi tiết

Gọi A' là ảnh của A qua phép đối xứng tâm O, khi đó O là trung điểm của AA'

\(  \Leftrightarrow \left\{ \begin{array}{l}
{x_O} = \frac{{{x_A} + {x_{A'}}}}{2}\\
{y_O} = \frac{{{y_A} + {y_{A'}}}}{2}
\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = 2{x_O} - {x_A}\\{y_{A'}} = 2{y_O} - {y_A}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
{x_{A'}} = 2.0 - \left( { - 1} \right) = 1\\
{y_{A'}} = 2.0 - 3 = - 3
\end{array} \right.\)

\( \Rightarrow A'\left( {1; - 3} \right)\)

Để tìm ảnh của đường thẳng \(d\) ta có thể dùng các cách sau:

Cách 1:

Cho y=0 ta được x-2.0+3=0 hay x=-3.

Cho x=-1 ta được -1-2y+3=0 hay y=1.

Do đó, đường thẳng \(d\) đi qua \(B(-3;0)\) và \(C (-1;1)\).

Ta có: \(B' = {D_{O}}(B) = (3;0)\) và \(C' = {D_{O}}(C) = (1;-1)\).

Đường thẳng B'C' là ảnh của d qua phép đối xứng tâm O.

\(\overrightarrow {B'C'}  = \left( {2;1} \right) \Rightarrow \overrightarrow {{n_{B'C'}}}  = \left( {1; - 2} \right)\) là VTPT của B'C'.

Mà B'C' đi qua B'(3;0) nên có phương trình:

1(x-3)-2(y-0)=0 hay x-2y-3=0.

Cách 2:

Đường thẳng \(d\) đi qua \(B(-3;0)\)

Do O không thuộc d nên gọi \(d'\) là ảnh của d qua phép đối xứng tâm \(O\) thì nó song song với \(d\).

Do đó \(d'\) có phương trình \(x- 2y +C =0\) \(\left( {C \ne 3} \right)\).

Gọi B' là ảnh của B qua phép đối xứng tâm O ta có: \(B' =( 3;0)\)

Vì \(B' \in (d') \Rightarrow 3+C=0 \Rightarrow C = -3\) (tm).

Vậy ảnh của \(d\) qua phép đối xứng tâm \(O\) là đường thẳng \(d'\) có phương trình \(x-2y-3=0\)

Loigiaihay.com


Bình chọn:
4.1 trên 17 phiếu

Các bài liên quan: - Bài 4. Phép đối xứng tâm

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài