
I. Hình thoi
Hình thoi ABCD có:
- Bốn đỉnh A, B, C, D.
- Bốn cạnh bằng nhau:
- Hai cạnh đối AB và CD, AD và BC song song với nhau.
- Hai đường chéo AC và BD vuông góc với nhau.
Chu vi hình thoi cạnh a bằng độ dài cạnh nhân với bốn: \(C = 4a\)
Diện tích hình thoi cạnh a bằng nửa tích hai đường chéo: \(S = \frac{{m.n}}{2}\)
Bốn cạnh bằng nhau: \(AB = BC = CD = DA; \)
Hai cạnh đối \(AB \) và \(CD; \) \(AD \) và \(BC \) song song với nhau;
Hai đường chéo bằng nhau: \(AC = BD; \)
Bốn góc ở các đỉnh \(A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D \) là góc vuông.
Chu vi hình vuông cạnh a là: \(C = 4a\)
Diện tích hình vuông cạnh a là: \(S = a.a = {a^2}\).
Hình bình hành ABCD có:
- Bốn đỉnh A, B, C, D.
- Hai cặp cạnh đối diện bằng nhau: \(AB = CD;\,BC = AD\).
- Hai cặp cạnh đối diện song song: \(AB\) song song với \(CD\); \(BC\) song song với \(AD\).
- Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
- Hai góc ở các đỉnh A và C bằng nhau; hai góc ở các đỉnh B và D bằng nhau.
Chu vi hình bình hành : \(C = 2(a + b)\).
Diện tích hình bình hành là: \(S = b.h\)
Trong đó \(b\) là cạnh, \(h\) là chiều cao tương ứng.
Hình chữ nhật \(ABCD\) có:
- Bốn đỉnh A, B, C, D
- Hai cặp cạnh đối diện bằng nhau: \(AB = CD;\,\,BC = AD\).
- Hai cặp cạnh đối diện song song: AB song song với CD; BC song song với AD.
- Bốn góc ở đỉnh A, B, C, D bằng nhau và bằng góc vuông.
- Hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường
Chu vi của hình chữ nhật là: \(C = 2\left( {a + b} \right);\)
Diện tích của hình chữ nhật là: \(S = a.b\)
Trong đó a, b là chiều dài và chiều rộng của HCN.
Hình thang cân \(MNPQ\) có:
Hai cạnh cạnh bên song song: \(MN\) song song với \(PQ\).
- Hai cạnh bên bằng nhau: \(MQ = NP\).
- Hai đường chéo bằng nhau: \(MP = NQ\).
- Hai góc kề với cạnh cạnh bên \(PQ\) bằng nhau.
- Chu vi của hình thang bằng tổng độ dài các cạnh của hình thang đó.
- Diện tích của hình thang bằng tổng độ dài hai đáy nhân với chiều cao rồi chia đôi.
Tam giác đều \(ABC\) có:
+ Ba cạnh bằng nhau: \(AB = BC = CA\).
+ Ba góc ở các đỉnh \(A,B,\,C\) bằng nhau.
Lục giác đều \(ABCDEF\) có:
- Sáu đỉnh A, B, C, D, E, F
- Sáu cạnh bằng nhau: \(AB = BC = CD = DE = EF\).
- Sáu góc ở các đỉnh A, B, C, D, E, F bằng nhau.
- Ba đường chéo chính bằng nhau \(AD = BE = CF\).
Để làm một con diều, bạn Nam lấy một tờ giấy hình chữ nhật có chiều dài 60 cm, chiều rộng 40 cm để cắt thành một hình thoi như hình bên dưới. Hãy tính diện tích của con diều.
Hãy cắt 6 hình tam giác đều rồi ghép lại thành hình bình hành.
Hãy đếm xem hình dưới đây có bao nhiêu hình thang cân, bao nhiêu hình lục giác đều?
Hãy cắt 5 hình bình hành sao cho khi ghép lại tạo thành một hình bình hành.
Giải Bài 3 trang 93 SGK Toán 6 Chân trời sáng tạo tập 1. Hình dưới...
Hãy cắt 3 hình như hình dưới đây và ghép lại để được một hình vuông.
Em hãy vẽ các hình sau đây: a) Tam giác đều có cạnh là 5 cm. b) Hình chữ nhật có chiều dài 5 cm và chiều rộng 3 cm. c) Hình vuông có cạnh 3 cm. d) Hình bình hành có hai cạnh liên tiếp là 6 cm, 8 cm và chiều cao bằng 4 cm.
Chọn đáp án đúng: 1. Hình thoi có độ dài...
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 6 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: