Bài 6.15 trang 185 SBT đại số 10


Giải bài 6.15 trang 185 sách bài tập đại số 10. Xác định dấu của các giá trị lượng giác sau

Lựa chọn câu để xem lời giải nhanh hơn

Cho \(\pi  < \alpha  < {{3\pi } \over 2}\). Xác định dấu của các giá trị lượng giác sau

LG a

\(\cos (\alpha  - {\pi  \over 2})\);

Phương pháp giải:

Nhận xét số đo của góc đã cho, suy ra dấu của các giá trị lượng giác cần tìm.

Lời giải chi tiết:

Với \(\pi  < \alpha  < {{3\pi } \over 2}\) thì \(\pi  - \frac{\pi }{2} < \alpha  - \frac{\pi }{2} < \frac{{3\pi }}{2} - \frac{\pi }{2}\) hay \({\pi  \over 2} < \alpha  - {\pi  \over 2} < \pi \).

Do đó \(\cos (\alpha  - {\pi  \over 2}) < 0\).

LG b

\(\sin ({\pi  \over 2} + \alpha )\);

Lời giải chi tiết:

Với \(\pi  < \alpha  < {{3\pi } \over 2}\) thì \(\pi  + \frac{\pi }{2} < \alpha  + \frac{\pi }{2} < \frac{{3\pi }}{2} + \frac{\pi }{2}\)

Hay \({{3\pi } \over 2} < {\pi  \over 2} + \alpha  < 2\pi \) nên \(\sin ({\pi  \over 2} + \alpha ) < 0\)

LG c

\(\tan ({{3\pi } \over 2} - \alpha )\);

Lời giải chi tiết:

\(\pi  < \alpha  < \frac{{3\pi }}{2} \) \(\Rightarrow \frac{{3\pi }}{2} - \pi  > \frac{{3\pi }}{2} - \alpha  > \frac{{3\pi }}{2} - \frac{{3\pi }}{2} \) \( \Rightarrow \frac{\pi }{2} > \frac{{3\pi }}{2} - \alpha  > 0\)

Hay \(0 < {{3\pi } \over 2} - \alpha  < {\pi  \over 2}\) nên \(\tan ({{3\pi } \over 2} - \alpha ) > 0\)

LG d

\(\cot (\alpha  + \pi )\)

Lời giải chi tiết:

\(\pi  < \alpha  < \frac{{3\pi }}{2}\) \( \Rightarrow \pi  + \pi  < \pi  + \alpha  < \pi  + \frac{{3\pi }}{2} \) \(  \Rightarrow 2\pi  < \pi  + \alpha  < \frac{{5\pi }}{2}\)

nên \(\cot (\alpha  + \pi ) > 0\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.7 trên 6 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài