Bài 6.15 trang 185 SBT đại số 10


Giải bài 6.15 trang 185 sách bài tập đại số 10. Xác định dấu của các giá trị lượng giác sau

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Cho \(\pi  < \alpha  < {{3\pi } \over 2}\). Xác định dấu của các giá trị lượng giác sau

LG a

\(\cos (\alpha  - {\pi  \over 2})\);

Phương pháp giải:

Nhận xét số đo của góc đã cho, suy ra dấu của các giá trị lượng giác cần tìm.

Lời giải chi tiết:

Với \(\pi  < \alpha  < {{3\pi } \over 2}\) thì \(\pi  - \frac{\pi }{2} < \alpha  - \frac{\pi }{2} < \frac{{3\pi }}{2} - \frac{\pi }{2}\) hay \({\pi  \over 2} < \alpha  - {\pi  \over 2} < \pi \).

Do đó \(\cos (\alpha  - {\pi  \over 2}) < 0\).

LG b

\(\sin ({\pi  \over 2} + \alpha )\);

Lời giải chi tiết:

Với \(\pi  < \alpha  < {{3\pi } \over 2}\) thì \(\pi  + \frac{\pi }{2} < \alpha  + \frac{\pi }{2} < \frac{{3\pi }}{2} + \frac{\pi }{2}\)

Hay \({{3\pi } \over 2} < {\pi  \over 2} + \alpha  < 2\pi \) nên \(\sin ({\pi  \over 2} + \alpha ) < 0\)

LG c

\(\tan ({{3\pi } \over 2} - \alpha )\);

Lời giải chi tiết:

\(\pi  < \alpha  < \frac{{3\pi }}{2} \) \(\Rightarrow \frac{{3\pi }}{2} - \pi  > \frac{{3\pi }}{2} - \alpha  > \frac{{3\pi }}{2} - \frac{{3\pi }}{2} \) \( \Rightarrow \frac{\pi }{2} > \frac{{3\pi }}{2} - \alpha  > 0\)

Hay \(0 < {{3\pi } \over 2} - \alpha  < {\pi  \over 2}\) nên \(\tan ({{3\pi } \over 2} - \alpha ) > 0\)

LG d

\(\cot (\alpha  + \pi )\)

Lời giải chi tiết:

\(\pi  < \alpha  < \frac{{3\pi }}{2}\) \( \Rightarrow \pi  + \pi  < \pi  + \alpha  < \pi  + \frac{{3\pi }}{2} \) \(  \Rightarrow 2\pi  < \pi  + \alpha  < \frac{{5\pi }}{2}\)

nên \(\cot (\alpha  + \pi ) > 0\)

Loigiaihay.com


Bình chọn:
3.7 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!