Bài 6.20 trang 186 SBT đại số 10>
Giải bài 6.20 trang 186 sách bài tập đại số 10. Không dùng bảng số và máy tính, rút gọn các biểu thức...
Không dùng bảng số và máy tính, rút gọn các biểu thức
LG a
\(A = \tan {18^0}\tan {288^0} + \sin {32^0}\sin {148^0} \) \( - \sin {302^0}\sin {122^0}\)
Lời giải chi tiết:
\(A = \tan ({90^0} - {72^0})\tan ({360^0} - {72^0}) \) \(+ \sin {32^0}\sin ({180^0} - {32^0}) \) \( - \sin ({360^0} - {58^0})\sin ({180^0} - {58^0})\)
\(\eqalign{
& =\cot {72^0}( - \tan {72^0}) + {\sin ^2}{32^0} + {\sin ^2}{58^0} \cr
& = - 1 + {\sin ^2}{32^0} + c{\rm{o}}{{\rm{s}}^2}{32^0} \cr
& = - 1 + 1 = 0 \cr} \)
LG b
\(B = {{1 + {{\sin }^4}\alpha - c{\rm{o}}{{\rm{s}}^4}\alpha } \over {1 - {{\sin }^6}\alpha - c{\rm{o}}{{\rm{s}}^6}\alpha }}\)
Lời giải chi tiết:
\(\eqalign{
& B = {{1 + ({{\sin }^2}\alpha + c{\rm{o}}{{\rm{s}}^2}\alpha )(si{n^2}\alpha - c{\rm{o}}{{\rm{s}}^2}\alpha )} \over {1 - ({{\sin }^2}\alpha + c{\rm{o}}{{\rm{s}}^2}\alpha )({{\sin }^4}\alpha - {{\sin }^2}\alpha c{\rm{o}}{{\rm{s}}^2}\alpha + c{\rm{o}}{{\rm{s}}^4}\alpha )}} \cr
& = {{1 + {{\sin }^2}\alpha - c{\rm{o}}{{\rm{s}}^2}\alpha } \over {1 - {\rm{[}}{{({{\sin }^2}\alpha + c{\rm{o}}{{\rm{s}}^2}\alpha )}^2} - 3{{\sin }^2}\alpha c{\rm{o}}{{\rm{s}}^2}\alpha }} \cr
& = {{2{{\sin }^2}\alpha } \over {3{{\sin }^2}\alpha c{\rm{o}}{{\rm{s}}^2}\alpha }} = {2 \over 3}(1 + {\tan ^2}\alpha ) \cr} \)
Loigiaihay.com
- Bài 6.21 trang 186 SBT đại số 10
- Bài 6.22 trang 186 SBT đại số 10
- Bài 6.23 trang 186 SBT đại số 10
- Bài tập trắc nghiệm trang 186, 187 SBT Đại số 10
- Bài 6.19 trang 185 SBT đại số 10
>> Xem thêm