Bài 6.21 trang 186 SBT đại số 10


Giải bài 6.21 trang 186 sách bài tập đại số 10. Biểu thức đó không thể là một số âm...

Đề bài

Chứng minh rằng với mọi \(\alpha \) làm cho biểu thức \({{\sin \alpha  + \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }}\) có nghĩa, biểu thức đó không thể là một số âm.

Lời giải chi tiết

Ta có:

\(\begin{array}{l}
\dfrac{{\sin \alpha + \tan \alpha }}{{\cos \alpha + \cot \alpha }}
= \dfrac{{\sin \alpha + \dfrac{{\sin \alpha }}{{\cos \alpha }}}}{{\cos \alpha + \dfrac{{\cos \alpha }}{{\sin \alpha }}}}\\
= \dfrac{{\sin \alpha \left( {1 + \dfrac{1}{{\cos \alpha }}} \right)}}{{\cos \alpha \left( {1 + \dfrac{1}{{\sin \alpha }}} \right)}}\\
= \tan \alpha .\dfrac{{1 + \dfrac{1}{{\cos \alpha }}}}{{1 + \dfrac{1}{{\sin \alpha }}}}\\
= \tan \alpha .\dfrac{{\dfrac{{\cos \alpha + 1}}{{\cos \alpha }}}}{{\dfrac{{\sin \alpha + 1}}{{\sin \alpha }}}}\\
= \tan \alpha .\left( {\dfrac{{\cos \alpha + 1}}{{\cos \alpha }}.\dfrac{{\sin \alpha }}{{\sin \alpha + 1}}} \right)\\
= {\tan ^2}\alpha .\dfrac{{\cos \alpha + 1}}{{\sin \alpha + 1}}
\end{array}\)

Vì \(1 + c{\rm{os}}\alpha  \ge {\rm{0}}\) và \(1 + \sin \alpha  > {\rm{0}}\) cho nên biểu thức đã cho không thể có giá trị là một số âm.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài