Bài 6.18 trang 185 SBT đại số 10


Giải bài 6.18 trang 185 sách bài tập đại số 10. Tính...

Lựa chọn câu để xem lời giải nhanh hơn

Cho \(\tan \alpha  - 3\cot \alpha  = 6\) và \(\pi  < \alpha  < {{3\pi } \over 2}\). Tính

LG a

\(\sin \alpha  + \cos \alpha \)

Lời giải chi tiết:

Vì \(\pi  < \alpha  < {{3\pi } \over 2}\)

Nên \(\cos \alpha  < 0,\sin \alpha  < 0\) và \(\tan \alpha  > 0\)

Ta có: \(\tan \alpha  - 3\cot \alpha  = 6 \Leftrightarrow \tan \alpha  - {3 \over {\tan \alpha }} - 6 = 0\)

\( \Leftrightarrow {\tan ^2}\alpha  - 6\tan \alpha  - 3 = 0\)

Vì \(\tan \alpha  > 0\) nên \(\tan \alpha  = 3 + 2\sqrt 3\)

\({\rm{co}}{{\rm{s}}^2}\alpha  = {1 \over {1 + {{\tan }^2}\alpha }} = {1 \over {22 + 12\sqrt 3 }}\)

Suy ra \({\rm{cos}}\alpha {\rm{ =  - }}{1 \over {\sqrt {22 + 12\sqrt 3 } }},\sin \alpha  =  - {{3 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }}.\)

Vậy \(\sin \alpha  + c{\rm{os}}\alpha {\rm{ =  - }}{{4 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }}\)

LG b

\({{2\sin \alpha  - \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }}\)

Lời giải chi tiết:

\(\eqalign{
& {{2\sin \alpha - \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }} = {{\sin \alpha (2 - {1 \over {{\rm{cos}}\alpha }})} \over {{\rm{cos \alpha  (1 + }}{1 \over {\sin \alpha }})}} \cr 
& = \tan \alpha .{{2\cos \alpha - 1} \over {{\rm{cos}}\alpha }}.{{\sin \alpha } \over {\sin \alpha + 1}} \cr &= {\tan ^2}\alpha .{{2\cos \alpha - 1} \over {\sin \alpha + 1}} \cr} \)

\(\eqalign{
& ={(3 + 2\sqrt 3 )^2}.{{ - {2 \over {\sqrt {22 + 12\sqrt 3 } }}-1} \over { - {{3 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }} + 1}} \cr 
& = (21 + 12\sqrt 3 ).{{2 + \sqrt {22 + 12\sqrt 3 } } \over {3 + 2\sqrt 3 - \sqrt {22 + 12\sqrt 3 } }} \cr} \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí