Bài 6.18 trang 185 SBT đại số 10


Giải bài 6.18 trang 185 sách bài tập đại số 10. Tính...

Lựa chọn câu để xem lời giải nhanh hơn

Cho \(\tan \alpha  - 3\cot \alpha  = 6\) và \(\pi  < \alpha  < {{3\pi } \over 2}\). Tính

LG a

\(\sin \alpha  + \cos \alpha \)

Lời giải chi tiết:

Vì \(\pi  < \alpha  < {{3\pi } \over 2}\)

Nên \(\cos \alpha  < 0,\sin \alpha  < 0\) và \(\tan \alpha  > 0\)

Ta có: \(\tan \alpha  - 3\cot \alpha  = 6 \Leftrightarrow \tan \alpha  - {3 \over {\tan \alpha }} - 6 = 0\)

\( \Leftrightarrow {\tan ^2}\alpha  - 6\tan \alpha  - 3 = 0\)

Vì \(\tan \alpha  > 0\) nên \(\tan \alpha  = 3 + 2\sqrt 3\)

\({\rm{co}}{{\rm{s}}^2}\alpha  = {1 \over {1 + {{\tan }^2}\alpha }} = {1 \over {22 + 12\sqrt 3 }}\)

Suy ra \({\rm{cos}}\alpha {\rm{ =  - }}{1 \over {\sqrt {22 + 12\sqrt 3 } }},\sin \alpha  =  - {{3 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }}.\)

Vậy \(\sin \alpha  + c{\rm{os}}\alpha {\rm{ =  - }}{{4 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }}\)

LG b

\({{2\sin \alpha  - \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }}\)

Lời giải chi tiết:

\(\eqalign{
& {{2\sin \alpha - \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }} = {{\sin \alpha (2 - {1 \over {{\rm{cos}}\alpha }})} \over {{\rm{cos \alpha  (1 + }}{1 \over {\sin \alpha }})}} \cr 
& = \tan \alpha .{{2\cos \alpha - 1} \over {{\rm{cos}}\alpha }}.{{\sin \alpha } \over {\sin \alpha + 1}} \cr &= {\tan ^2}\alpha .{{2\cos \alpha - 1} \over {\sin \alpha + 1}} \cr} \)

\(\eqalign{
& ={(3 + 2\sqrt 3 )^2}.{{ - {2 \over {\sqrt {22 + 12\sqrt 3 } }}-1} \over { - {{3 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }} + 1}} \cr 
& = (21 + 12\sqrt 3 ).{{2 + \sqrt {22 + 12\sqrt 3 } } \over {3 + 2\sqrt 3 - \sqrt {22 + 12\sqrt 3 } }} \cr} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài