Câu hỏi 5 trang 52 SGK Đại số và Giải tích 11>
Có 16 đội bóng đá tham gia thi đấu...
Đề bài
Có 16 đội bóng đá tham gia thi đấu. Hỏi cần phải tổ chức bao nhiêu trận đấu sao cho hai đội bất kì đều gặp nhau đúng một lần?
Video hướng dẫn giải
Lời giải chi tiết
Để hai đội bất kì gặp nhau đúng một lần, tức là trong số 16 đội mỗi trận sẽ lấy 2 đội bất kì, và mỗi lần lấy có ít nhất 1 đội khác với các lần khác. Nói cách khác, số trận đấu chính là số tập hợp con gồm 2 phần tử của tâp hợp gồm 16 phần tử .
Số trận đấu là số tổ hợp chập 2 của 16 phần tử:
\(C_{16}^2 = \frac{{16!}}{{2!(16 - 2)!}} = \frac{{16!}}{{2!.14!}} = \frac{{15.16}}{2} = 120\) (trận)
Loigiaihay.com
- Bài 1 trang 54 SGK Đại số và Giải tích 11
- Bài 2 trang 54 SGK Đại số và Giải tích 11
- Bài 3 trang 54 SGK Đại số và Giải tích 11
- Bài 4 trang 55 SGK Đại số và Giải tích 11
- Bài 5 trang 55 SGK Đại số và Giải tích 11
>> Xem thêm