Bài 51 trang 127 Sách bài tập Hình học lớp 12 Nâng cao>
Cho tứ diện ABCD với
Đề bài
Cho tứ diện ABCD với A(3;5;-1), B(7;5;3), C(9;-1;5), D(5;3;-3). Viết phương trình mặt phẳng cách đều bốn đỉnh của tứ diện đó.
Lời giải chi tiết
Một mặt phẳng muốn cách đều hai điểm M, N thì hoặc nó đi qua trung điểm của MN hoặc nó song song với MN. Vì vậy, để mặt phẳng \(\left( \alpha \right)\) cách đều bốn đỉnh A, B, C, D của hình tứ diện thì :
+) Hoặc mặt phẳng \(\left( \alpha \right)\) đi qua trung điểm của ba cạnh cùng xuất phát từ một đỉnh của tứ diện. Có bốn mặt phẳng như vậy.
+) Hoặc mp\(\left( \alpha \right)\) chứa hai đường trung bình của tứ diện.Có ba mặt phẳng như vậy.
Tóm lại, ta có bảy mặt phẳng thỏa mãn yêu cầu của đề bài là
\(\eqalign{ & x - z - 6 = 0;x + y - 10 = 0;x + 2y - z - 8 = 0;\cr&2x + y - z - 14 = 0; x - y - z - 2 = 0;\cr&2x + y + z - 16 = 0;5x + y - 2z - 28 = 0. \cr} \)
Loigiaihay.com
- Bài 52 trang 127 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 53 trang 127 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 54 trang 127 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 50 trang 127 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 49 trang 126 Sách bài tập Hình học lớp 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao