Bài 42 trang 125 Sách bài tập Hình học lớp 12 Nâng cao


a)Tìm

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Tìm \(\alpha \) để hai mặt phẳng

\(x - {1 \over 4}y - z + 5 = 0\) và \(x\sin \alpha  + y\cos \alpha  + z{\sin ^3}\alpha  + 2 = 0\)

vuông góc với nhau

Giải chi tiết:

\(\left[ \matrix{  \alpha  = {\pi  \over 2} + k\pi  \hfill \cr  \alpha  = {\pi  \over {12}} + m\pi  \hfill \cr  \alpha  = {{5\pi } \over {12}} + n\pi  \hfill \cr}  \right.\)       k, m, n\( \in Z.\)

LG b

Tìm \(\alpha \) để vectơ \(\overrightarrow u (\sin \alpha ;0;\sin \alpha \cos 2\alpha )\) có giá song song hoặc nằm trên mặt phẳng (P) :x+y+2z+6=0.

Giải chi tiết:

\(\left[ \matrix{  \alpha  = k\pi  \hfill \cr  \alpha  =  \pm {\pi  \over 3} + l\pi  \hfill \cr}  \right.\)    \(k,l \in Z\).

LG c

Cho hai mặt phẳng có phương trình :

2x-my+3z-6+m=0 và (m+3)x-2y+(5m+1)z-10=0.

Với giá trị nào của m thì hai mặt phẳng đó :

-Song song với nhau .

-Trùng nhau.

-Cắt nhau.

-Vuông góc với nhau ?

Giải chi tiết:

Hai mặt phẳng song song với nhau \( \Leftrightarrow {2 \over {m + 3}} = {m \over 2} = {3 \over {5m + 1}} \ne {{ - 6 + m} \over { - 10}}.( * )\)

Ta có \(\left\{ \matrix{  {2 \over {m + 3}} = {m \over 2} \hfill \cr  {m \over 2} = {3 \over {5m + 1}} \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {m^2} + 3m - 4 = 0 \hfill \cr  5{m^2} + m - 6 = 0 \hfill \cr}  \right. \Leftrightarrow m = 1.\)

Nhưng với m=1 ta có \({m \over 2} = {1 \over 2}\) và \({{ - 6 + m} \over { - 10}} = {1 \over 2}\), tức là điều kiện \(\left(  *  \right)\) không thỏa mãn. Vậy không có giá trị nào của m để hai mặt phẳng song song.

Từ đó suy ra : hai mặt phẳng trùng nhau \( \Leftrightarrow m = 1;\)

                       Hai mặt phẳng cắt nhau \( \Leftrightarrow m \ne 1.\)

Hai mặt phẳng vuông góc với nhau khi : 2(m+3)+m.2+3.(5m+1)=0

\( \Leftrightarrow 19m + 9 = 0 \Leftrightarrow m =  - {9 \over {19}}.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2. Phương trình mặt phẳng

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài