Bài 44 trang 125 Sách bài tập Hình học lớp 12 Nâng cao


Đề bài

Xác định các giá trị k và m để ba mặt phẳng sau đây cùng đi qua một đường thẳng :

\(5x+ky+4z+m=0\)

\(3x-7y+z-3=0\)

\(x-9y-2z+5=0.\)

Lời giải chi tiết

Để ba mặt phẳng đã cho cùng đi qua một đường thẳng, điều kiện cần và đủ là mặt phẳng \(5x + ky + 4z + m = 0\) phải chứa hai điểm phân biệt của đường thẳng \(\Delta \) với \(\Delta \) là giao tuyến của hai mặt phẳng còn lại.

Ta tìm hai điểm nào đó của \(\Delta \).

Cho y = 0, ta có \(\left\{ \matrix{  3x + z = 3 \hfill \cr  x - 2z =  - 5 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  x = {1 \over 7} \hfill \cr  z = {{18} \over 7} \hfill \cr}  \right.\)

\(\Rightarrow {M_1}\left( {{1 \over 7};0;{{18} \over 7}} \right) \in \Delta \)

Cho z = 0, ta có \(\left\{ \matrix{  3x - 7y = 3 \hfill \cr  x - 9y =  - 5 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  x = {{31} \over {10}} \hfill \cr  y = {9 \over {10}} \hfill \cr}  \right.\)

\(\Rightarrow {M_2}\left( {{{31} \over {10}};{9 \over {10}};0} \right) \in \Delta \)

Thay tọa độ điểm \({M_1},{M_2}\) vào phương trình mặt phẳng \(5x + ky + 4z + m = 0\) ta được hệ

\(\left\{ \matrix{  {5 \over 7} + {{72} \over 7} + m = 0 \hfill \cr  {{155} \over {10}} + {{9k} \over {10}} + m = 0 \hfill \cr}  \right. \Rightarrow k =  - 5,m =  - 11.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2. Phương trình mặt phẳng

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.