Bài 40 trang 125 Sách bài tập Hình học lớp 12 Nâng cao>
Viết phương trình mạt phẳng đi qua điểm
Đề bài
Viết phương trình mạt phẳng đi qua điểm M0(1;1;1), cắt các tia Ox, Oy, Oz tại A, B, C, sao cho thể tích của tứ diện OABC có giá trị nhỏ nhất.
Lời giải chi tiết
Giả sử \(A(a;0;0),B(0;b;0),C = (0;0;c)\) với \(a,b,c > 0\) và (P) là mặt phẳng phải tìm. Phương trình của (P) là :
\({x \over a} + {y \over b} + {z \over c} = 1.\)
Vì \({M_0} \in \left( P \right)\) nên \({1 \over a} + {1 \over b} + {1 \over c} = 1.\)
Thể tích của tứ diện OABC là : \({V_{OABC}} = {1 \over 6}abc.\)
Theo bất đẳng thức Cô-si :
\(1 = {1 \over a} + {1 \over b} + {1 \over c} \ge {3 \over {\root 3 \of {abc} }} \Leftrightarrow abc \ge 27\)
\( \Rightarrow {V_{OABC}} \ge {{27} \over 6} = {9 \over 2}\), dấu bằng xảy ra khi \(a=b=c=3.\)
Vậy VOABC nhỏ nhất bằng \({9 \over 2}\) khi \(a=b=c=3\), khi đó phương trình mặt phẳng (P) là \(x+y+z-3=0.\)
Loigiaihay.com
- Bài 41 trang 125 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 42 trang 125 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 43 trang 125 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 44 trang 125 Sách bài tập Hình học lớp 12 Nâng cao
- Bài 45 trang 126 Sách bài tập Hình học lớp 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao