Bài 45 trang 126 Sách bài tập Hình học lớp 12 Nâng cao


Đề bài

Cho ba mặt phẳng \((P):x + y + z - 6 = 0\)

                           \(\eqalign{  & (Q):mx - 2y + z + m - 1 = 0  \cr  & (R):mx + (m - 1)y - z + 2m = 0 \cr} \)

Xác định giá trị m để ba mặt phẳng đó đôi một vuông góc với nhau, tìm giao điểm chung của cả ba mặt phẳng.

Lời giải chi tiết

Vectơ pháp tuyến của ba mặt phẳng \((P),(Q),(R)\) lần lượt là :

\(\overrightarrow {{n_P}}  = (1;1;1),\)

\(\overrightarrow {{n_Q}}  = (m; - 2;1),\)

\(\overrightarrow {{n_R}}  = (m;m - 1; - 1).\)

Ba mặt phẳng đôi một vuông góc khi và chỉ khi:

\(\eqalign{
& \left\{ \matrix{
m - 2 + 1 = 0 \hfill \cr 
m + m - 1 - 1 = 0 \hfill \cr 
{m^2} - 2m + 2 - 1 = 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
m = 1 \hfill \cr 
m = 1 \hfill \cr 
{\left( {m - 1} \right)^2} = 0 \hfill \cr} \right. \Leftrightarrow m = 1 \cr} \)

Gọi I (x;y;z) là giao điểm chung của ba mặt phẳng. Tọa độ điểm I là nghiệm của hệ sau

\(\left\{ \matrix{  x + y + z - 6 = 0 \hfill \cr  x - 2y + z = 0 \hfill \cr  x - z + 2 = 0 \hfill \cr}  \right. \Rightarrow I = (1;2;3).\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2. Phương trình mặt phẳng

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.