Câu hỏi 8 trang 145 SGK Giải tích 12>
Nêu định nghĩa và các phương pháp tính nguyên hàm.
Đề bài
Nêu định nghĩa và các phương pháp tính nguyên hàm.
Lời giải chi tiết
Nguyên hàm
Cho hàm số f(x) xác định trên K ( k là nửa khoảng hay đoạn của trục số). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K.
Phương pháp tính nguyên hàm
a) Phương pháp đổi biến số
Định lý 1: Nếu \(\int {f\left( u \right)du} = F\left( u \right) + C\) và \(u = u\left( x \right)\) là hàm số có đạo hàm liên tục thì \(\int {f\left( {u\left( x \right)} \right)u'\left( x \right)dx} = F\left( {u\left( x \right)} \right) + C\)
Hệ quả: \(\int {f\left( {ax + b} \right)dx} = \frac{1}{a}F\left( {ax + b} \right) + C\left( {a \ne 0} \right)\)
b. Phương pháp tính nguyên hàm từng phần
Định lý 2: Nếu hai hàm số \(u = u\left( x \right)\) và \(y = v\left( x \right)\) có đạo hàm liên tục trên \(K\) thì \(\int {u\left( x \right)v'\left( x \right)dx} = u\left( x \right)v\left( x \right) - \int {u'\left( x \right)v\left( x \right)dx} \).
Chú ý: Viết gọn \(\int {udv} = uv - \int {vdu} \)
Loigiaihay.com
- Câu hỏi 10 trang 145 SGK Giải tích 12
- Bài 3 trang 146 SGK Giải tích 12
- Bài 4 trang 146 SGK Giải tích 12
- Bài 5 trang 146 SGK Giải tích 12
- Bài 6 trang 146 SGK Giải tích 12
>> Xem thêm