Bài 9 trang 147 SGK Giải tích 12

Bình chọn:
3.8 trên 4 phiếu

Giải bài 9 trang 147 SGK Giải tích 12. Giải các phương trình sau:

Đề bài

Giải các phương trình sau:

a) \({13^{2x + 1}} - {13^x} - 12 = 0\)

b) \(({3^x} + {\rm{ }}{2^x})({3^x} + {\rm{ }}{3.2^x}){\rm{ }} = {\rm{ }}{8.6^x}\)

c) \({\log _{\sqrt 3 }}(x - 2).{\log _5}x = 2{\log _3}(x - 2)\)

d) \(\log_2^2x{\rm{ }}-{\rm{ }}5\log_2x{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0.\)

Phương pháp giải - Xem chi tiết

+) Tìm điều kiện xác định.

+) Sử dụng các phương pháp giải phương trình logarit để giải phương trình: đổi biến, mũ hóa, hàm số.......

+)  \({\log _a}f\left( x \right) = b \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) > 0\\f\left( x \right) = {a^b}\end{array} \right..\)

+) \({\left( a \right)^{f\left( x \right)}} = b \Leftrightarrow f\left( x \right) = {\log _a}b.\) 

Lời giải chi tiết

 a) Phương trình: \( \Leftrightarrow {13.13^{2x}} - {13^x} - 12 = 0.\)

Đặt  \(t = 13^x > 0\) ta được phương trình:

\(13t^2 – t – 12 = 0  ⇔ (t – 1)(13t + 12) = 0\)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
t - 1 = 0\\
13t + 12 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
t = 1\;\;\left( {tm} \right)\\
t = - \dfrac{{12}}{{13}}\;\;\left( {ktm} \right)
\end{array} \right.\\
\Leftrightarrow {13^x} = 1 \Leftrightarrow x = 0.
\end{array}\)

Vậy phương trình có nghiệm \(x=0.\)

b) Chia cả hai vế phương trình cho \(9^x\) ta được phương trình tương đương

\(\left( {1 + {{\left( {\dfrac{2}{3}} \right)}^x}} \right)\left( {1 + 3.{{\left( {\dfrac{2}{3}} \right)}^x}} \right) = 8.{\left( {\dfrac{2}{3}} \right)^x}.\)

Đặt \(t = {({2 \over 3})^x} (t > 0)\) , ta được phương trình:

\(\begin{array}{l}
\Leftrightarrow \left( {3t - 1} \right)\left( {t - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
3t - 1 = 0\\
t - 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
t = \dfrac{1}{3}\;\;\left( {tm} \right)\\
t = 1\;\;\left( {tm} \right)
\end{array} \right.
\end{array}\)

Với \(\displaystyle t = {1 \over 3}\) ta được nghiệm \(\displaystyle x = {\log _{{2 \over 3}}}{1 \over 3}\)

Với \(t = 1\) ta được nghiệm \(x = 0.\)

Vậy phương trình có hai nghiệm: \(x=0\) và \(\displaystyle x= {\log _{{2 \over 3}}}{1 \over 3}. \)

c) Điều kiện: \(x > 2\)

\(\eqalign{
& Pt \Leftrightarrow 2lo{g_3}(x - 2).lo{g_5}x = 2lo{g_3}(x - 2) \cr
& \Leftrightarrow 2lo{g_3}(x - 2)({\log _5}x - 1) = 0 \cr} \)

  \(\Leftrightarrow\left[ \matrix{{\log _3}(x - 2) = 0 \hfill \cr lo{g_5}x = 1 \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{x = 3 (tm) \hfill \cr x = 5 (tm) \hfill \cr}  \right.\)

Vậy phương trình có hai nghiệm phân biệt \(x=3\) và \(x=5.\)

 d) Điều kiện: \(x > 0\)

\(\eqalign{
& \log _2^2x - 5{\log _2}x + 6 = 0 \cr
& \Leftrightarrow ({\log _2}x - 2)({\log _2}x - 3) = 0 \cr
& \Leftrightarrow \left[ \matrix{
{\log _2}x = 2 \hfill \cr
{\log _2}x = 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 4 (tm)\hfill \cr
x = 8  (tm)\hfill \cr} \right. \cr} \)

Vậy phương trình có hai nghiệm phân biệt: \(x=4\) và \(x=8.\)

 loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.