Bài 8 trang 147 SGK Giải tích 12


Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

LG a

a) \(f(x) = 2x^3– 3x^2– 12x + 1\) trên đoạn \(\displaystyle \left[ { - 2 ; \, {5 \over 2}} \right].\)

Phương pháp giải:

Để tìm GTLN, GTNN của hàm số \(y=f\left( x \right)\) trên đoạn \(\left[ a;\ b \right]\) ta làm như sau :

+) Tìm các điểm \({{x}_{1}};\ {{x}_{2}};\ {{x}_{3}};...;\ {{x}_{n}}\) thuộc đoạn \(\left[ a;\ b \right]\) mà tại đó hàm số có đạo hàm \(f'\left( x \right)=0\) hoặc không có đạo hàm.

+) Tính \(f\left( {{x}_{1}} \right);\ \ f\left( {{x}_{2}} \right);\ \ f\left( {{x}_{3}} \right);...;\ \ f\left( {{x}_{n}} \right)\) và \(f\left( a \right);\ f\left( b \right).\)

+) So sánh các giá trị tìm được ở trên. Giá trị lớn nhất trong các giá trị đó chính là GTLN của hàm số \(y=f\left( x \right)\) trên \(\left[ a;\ b \right]\) và giá trị nhỏ nhất trong các giá trị đó chính là GTNN của hàm số \(y=f\left( x \right)\) trên \(\left[ a;\ b \right]\).

\(\begin{align}& \underset{x\in \left[ a;\ b \right]}{\mathop{\max }}\,f\left( x \right)=\max \left\{ f\left( {{x}_{1}} \right);...;\ f\left( {{x}_{n}} \right);\ f\left( a \right);\ f\left( b \right) \right\}. \\ & \underset{x\in \left[ a;\ b \right]}{\mathop{\min }}\,f\left( x \right)=\min \left\{ f\left( {{x}_{1}} \right);...;\ f\left( {{x}_{n}} \right);\ f\left( a \right);\ f\left( b \right) \right\}. \\ \end{align}\)

Lời giải chi tiết:

\(f(x) = 2x^3– 3x^2– 12x + 1 \) \(⇒ f’(x) = 6x^2 – 6x – 12\)

\(f’(x) = 0 ⇔ x =-1\) hoặc \(x=2\)

So sánh các giá trị: 

\(f(-2) = -3\); \( f(-1) = 8\);

\(f(2) = -19\), \(\displaystyle f({5 \over 2}) = {{ - 33} \over 2}\)

Suy ra:

\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ { - 2,{5 \over 2}} \right]} f(x) = f( - 1) = 8 \cr 
& \mathop {\min}\limits_{x \in \left[ { - 2,{5 \over 2}} \right]} f(x) = f(2) = - 19 \cr} \)

LG b

b) \( f(x) = x^2\ln x\) trên đoạn \(\left[ {1; \, e} \right].\)

Lời giải chi tiết:

\(f(x) = x^2 \ln x \) \(⇒ f’(x)= 2x\ln x + x > 0, ∀ x ∈ [1, e]\) nên \(f(x)\) đồng biến.

Do đó:

\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ {1,e} \right]} f(x) = f(e) = {e^2} \cr 
& \mathop {\min}\limits_{x \in \left[ {1,e} \right]} f(x) = f(1) = 0 \cr} \)

LG c

c) \(f(x) = xe^{-x}\) trên nửa khoảng \([0; \, +∞).\)

Lời giải chi tiết:

\(f(x)= xe^{-x}\) \(⇒ f’(x)=e^{-x} –xe^{-x} = (1 – x)e^{-x}\) nên:

\(f’(x) = 0 ⇔ x = 1, f’(x) > 0, ∀x ∈ (0, 1)\) và \(f’(x) < 0, ∀x ∈ (1, +∞)\)

nên: \(\displaystyle \mathop {\max }\limits_{x \in {\rm{[}}0, + \infty )} f(x) = f(1) = {1 \over e}.\)

Ngoài ra \(f(x)= xe^{-x} \ge 0, ∀ x ∈ [0, +∞)\) và \(f(0) = 0\) suy ra

\(\mathop {\min}\limits_{x \in {\rm{[}}0, + \infty )} f(x) = f(0) = 0\)

LG d

d) \(f(x) = 2\sin x + \sin 2x\) trên đoạn \(\displaystyle\left[ {0; \,{{3\pi } \over 2}} \right].\)

Lời giải chi tiết:

\(f(x) = 2\sin x + \sin2 x  \) \(⇒ f’(x)= 2\cos x + 2\cos 2x\)

\(f’(x) = 0 ⇔ \cos 2x = -\cos x \) \( ⇔ 2x = ± (π – x) + k2π\)

\( \displaystyle ⇔ x \in \left\{ { - \pi  + k2\pi ;{\pi  \over 3} + {{k2\pi } \over 3}} \right\}\)

Trong khoảng \(\displaystyle\left[ {0,{{3\pi } \over 2}} \right]\) , phương trình \(f’(x) = 0\) chỉ có hai nghiệm là \(\displaystyle {x_1} = {\pi  \over 3};{x_2} = \pi \)

So sánh bốn giá trị: \(f(0) = 0\); \(\displaystyle f({\pi  \over 3}) = {{3\sqrt 3 } \over 2};f(\pi ) = 0;f({{3\pi } \over 2}) =  - 2\)

Suy ra:

\(\eqalign{
& \mathop {\max }\limits_{x \in \left[ {0,{{3\pi } \over 2}} \right]} f(x) = f({\pi \over 3}) = {{3\sqrt 3 } \over 2} \cr 
& \mathop {\min}\limits_{x \in \left[ {0,{{3\pi } \over 2}} \right]} f(x) = f({{3\pi } \over 2}) = - 2 \cr} \)

Loigiaihay.com


Bình chọn:
3.8 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí