Bài 10 trang 147 SGK Giải tích 12

Bình chọn:
3.8 trên 9 phiếu

Giải bài 10 trang 147 SGK Giải tích 12. Giải các bất phương trình sau

Đề bài

Giải các bất phương trình sau

a) \(\displaystyle{{{2^x}} \over {{3^x} - {2^x}}} \le 2\)

b) \(\displaystyle{({1 \over 2})^{{{\log }_2}({x^2} - 1)}} > 1\)

c) \(\displaystyle{\log ^2}x + 3\log x \ge 4\)

d) \(\displaystyle{{1 - {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 4}.\)

Phương pháp giải - Xem chi tiết

+) Sử dụng các phương pháp giải bất phương trình mũ và logarit để làm bài.

+) \({\left( a \right)^{f\left( x \right)}} < b \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
a > 1\\
f\left( x \right) < {\log _a}b
\end{array} \right.\\
\left\{ \begin{array}{l}
0 < a < 1\\
f\left( x \right) > {\log _a}b
\end{array} \right.
\end{array} \right..\)

+) \({\log _a}f\left( x \right) > b \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
a > 1\\
f\left( x \right) > {a^b}
\end{array} \right.\\
\left\{ \begin{array}{l}
0 < a < 1\\
f\left( x \right) < {a^b}
\end{array} \right.
\end{array} \right..\)

Lời giải chi tiết

a) Ta có:

\(\displaystyle {{{2^x}} \over {{3^x} - {2^x}}} \le 2 \Leftrightarrow {1 \over {{{({3 \over 2})}^x} - 1}} \le 2\)

Đặt \(\displaystyle t = {({3 \over 2})^2}(t > 0)\) , bất phương trình trở thành:

\(\eqalign{
& {1 \over {t - 1}} \le 2 \Leftrightarrow {1 \over {t - 1}} - 2 \le 0 \Leftrightarrow {{ - 2t + 3} \over {t - 1}} \le 0 \cr
& \Leftrightarrow \left[ \matrix{
0 < t < 1 \hfill \cr
t \ge {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{({3 \over 2})^x} < 1 \hfill \cr
{({3 \over 2})^2} \ge {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x < 0 \hfill \cr
x \ge 1 \hfill \cr} \right.. \cr} \)

 b) Ta có:

\(\eqalign{
& {({1 \over 2})^{{{\log }_2}({x^2} - 1)}} > 1 \Leftrightarrow \left\{ \matrix{
{x^2} - 1 > 0 \hfill \cr
{\log _2}({x^2} - 1) < 0 \hfill \cr} \right. \cr
& \Leftrightarrow 0 < {x^2} - 1 < 1 \Leftrightarrow 1 < |x| < \sqrt 2 \cr
& \Leftrightarrow x \in ( - \sqrt 2 , - 1) \cup (1,\sqrt 2 ) \cr} \)

c) Điều kiện: \(x > 0\)

\(\eqalign{
& {\log ^2}x + 3\log x \ge 4 \Leftrightarrow (\log x + 4)(logx - 1) \ge 0 \cr
& \Leftrightarrow \left[ \matrix{
{\mathop{\rm logx}\nolimits} \ge 1 \hfill \cr
logx \le - 4 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x \ge 10 \hfill \cr
0 < x \le {10^{ - 4}} \hfill \cr} \right. \cr} \)

 d) Ta có: 

\(\eqalign{
& {{1 - {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 4} \Leftrightarrow {{1 - {{\log }_4}x} \over {1 + 2{{\log }_4}x}} \le {1 \over 4} \cr  &  \Leftrightarrow \frac{{4 - 4{{\log }_4}x - 1 - 2{{\log }_4}x}}{{4\left( {1 + {{\log }_4}x} \right)}} \le 0 \cr
& \Leftrightarrow {{3 - 6{{\log }_4}x} \over {1 + 2{{\log }_4}x}}\le0  \cr 
& \Leftrightarrow \left[ \matrix{
{\log _4}x \le {{ - 1} \over 2} \hfill \cr
{\log _4}x \ge {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
0 < x < {1 \over 2} \hfill \cr
x \ge 2 \hfill \cr} \right. .\cr} \)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.