Bài 10 trang 147 SGK Giải tích 12


Giải bài 10 trang 147 SGK Giải tích 12. Giải các bất phương trình sau

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình sau

LG a

a) \(\displaystyle{{{2^x}} \over {{3^x} - {2^x}}} \le 2\)

Phương pháp giải:

+) Sử dụng các phương pháp giải bất phương trình mũ và logarit để làm bài.

+) \({\left( a \right)^{f\left( x \right)}} < b \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
a > 1\\
f\left( x \right) < {\log _a}b
\end{array} \right.\\
\left\{ \begin{array}{l}
0 < a < 1\\
f\left( x \right) > {\log _a}b
\end{array} \right.
\end{array} \right..\)

+) \({\log _a}f\left( x \right) > b \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
a > 1\\
f\left( x \right) > {a^b}
\end{array} \right.\\
\left\{ \begin{array}{l}
0 < a < 1\\
f\left( x \right) < {a^b}
\end{array} \right.
\end{array} \right..\)

Lời giải chi tiết:

Chia cả tử và mẫu của bất phương trình cho \(2^x>0\) ta có:

\(\displaystyle {{{2^x}} \over {{3^x} - {2^x}}} \le 2 \Leftrightarrow {1 \over {{{({3 \over 2})}^x} - 1}} \le 2\)

Đặt \(\displaystyle t = {({3 \over 2})^x}(t > 0)\) , bất phương trình trở thành:

\(\eqalign{
& {1 \over {t - 1}} \le 2 \Leftrightarrow {1 \over {t - 1}} - 2 \le 0 \Leftrightarrow {{ - 2t + 3} \over {t - 1}} \le 0 \cr 
& \Leftrightarrow \left[ \matrix{
0 < t < 1 \hfill \cr 
t \ge {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{({3 \over 2})^x} < 1 \hfill \cr 
{({3 \over 2})^x} \ge {3 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x < 0 \hfill \cr 
x \ge 1 \hfill \cr} \right.. \cr} \)

LG b

b) \(\displaystyle{({1 \over 2})^{{{\log }_2}({x^2} - 1)}} > 1\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {({1 \over 2})^{{{\log }_2}({x^2} - 1)}} > 1 \Leftrightarrow \left\{ \matrix{
{x^2} - 1 > 0 \hfill \cr 
{\log _2}({x^2} - 1) < 0 \hfill \cr} \right. \cr 
& \Leftrightarrow 0 < {x^2} - 1 < 1 \Leftrightarrow 1 < |x| < \sqrt 2 \cr 
& \Leftrightarrow x \in ( - \sqrt 2 , - 1) \cup (1,\sqrt 2 ) \cr} \)

LG c

c) \(\displaystyle{\log ^2}x + 3\log x \ge 4\)

Lời giải chi tiết:

Điều kiện: \(x > 0\)

\(\eqalign{
& {\log ^2}x + 3\log x \ge 4 \Leftrightarrow (\log x + 4)(logx - 1) \ge 0 \cr 
& \Leftrightarrow \left[ \matrix{
{\mathop{\rm logx}\nolimits} \ge 1 \hfill \cr 
logx \le - 4 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x \ge 10 \hfill \cr 
0 < x \le {10^{ - 4}} \hfill \cr} \right. \cr} \)

LG d

d) \(\displaystyle{{1 - {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 4}.\)

Lời giải chi tiết:

Ta có: 

\(\eqalign{
& {{1 - {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 4} \Leftrightarrow {{1 - {{\log }_4}x} \over {1 + 2{{\log }_4}x}} \le {1 \over 4} \cr  &  \Leftrightarrow \frac{{4 - 4{{\log }_4}x - 1 - 2{{\log }_4}x}}{{4\left( {1 + {{\log }_4}x} \right)}} \le 0 \cr
& \Leftrightarrow {{3 - 6{{\log }_4}x} \over {1 + 2{{\log }_4}x}}\le0  \cr 
& \Leftrightarrow \left[ \matrix{
{\log _4}x \le {{ - 1} \over 2} \hfill \cr 
{\log _4}x \ge {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
0 < x < {1 \over 2} \hfill \cr 
x \ge 2 \hfill \cr} \right. .\cr} \)

Loigiaihay.com


Bình chọn:
3.8 trên 9 phiếu

Các bài liên quan: - ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.