Bài 15 trang 148 SGK Giải tích 12


Giải bài 15 trang 148 SGK Giải tích 12. Giải các phương trình sau trên tập số phức

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau trên tập số phức

LG a

a) \((3 + 2i)z – (4 + 7i) = 2 – 5i\)

Phương pháp giải:

Đưa phương trình về dạng \(az + b = 0 \Leftrightarrow z =  - \dfrac{b}{a}\,\,\left( {a \ne 0} \right)\)

Lời giải chi tiết:

\((3 + 2i)z – (4 + 7i) = 2 – 5i\)

\( \Leftrightarrow \left( {3 + 2i} \right)z = 2 - 5i + 4 + 7i\)

\(\eqalign{
& \Leftrightarrow (3 + 2i)z = 6 + 2i \cr 
& \Leftrightarrow z = {{6 + 2i} \over {3 + 2i}} \cr} \)

\(\begin{array}{l}
\Leftrightarrow z = \dfrac{{\left( {6 + 2i} \right)\left( {3 - 2i} \right)}}{{{3^2} + {2^2}}}\\
\Leftrightarrow z = \dfrac{{18 + 6i - 12i - 4{i^2}}}{{13}}\\
\Leftrightarrow z = \dfrac{{22 - 6i}}{{13}} = \dfrac{{22}}{{13}} - \dfrac{6}{{13}}i
\end{array}\)

LG b

b) \((7 – 3i)z + (2 + 3i) = (5 – 4i)z\)

Lời giải chi tiết:

\((7 – 3i)z + (2 + 3i) = (5 – 4i)z\)

\(\eqalign{
& \Leftrightarrow (7 - 3i - 5 + 4i)z = - 2 - 3i  \cr} \)

\(\begin{array}{l}
\Leftrightarrow \left( {2 + i} \right)z = - 2 - 3i\\
\Leftrightarrow z = \dfrac{{ - 2 - 3i}}{{2 + i}}\\
\Leftrightarrow z = \dfrac{{\left( { - 2 - 3i} \right)\left( {2 - i} \right)}}{{{2^2} + {1^2}}}\\
\Leftrightarrow z = \dfrac{{ - 4 - 6i + 2i + 3{i^2}}}{5}\\
\Leftrightarrow z = \dfrac{{ - 7 - 4i}}{5} = - \dfrac{7}{5} - \dfrac{4}{5}i
\end{array}\)

LG c

c) \(z^2 – 2z + 13 = 0\)

Phương pháp giải:

Sử dụng hằng đẳng thức.

Lời giải chi tiết:

\(z^2– 2z + 13 = 0\) \(⇔ z^2-2z+1 = -12\)

\(⇔ (z – 1)^2 = -12 \) \( \Leftrightarrow z - 1 =  \pm 2\sqrt 3 i\) \(⇔ z = 1 ± 2 \sqrt3 i\)

LG d

d) \(z^4 -z^2– 6 = 0\)

Phương pháp giải:

Đưa phương trình về dạng phương trình tích.

Lời giải chi tiết:

\(z^4 – z^2– 6 = 0\)

\(⇔ (z^2 – 3)(z^2 + 2) = 0\)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
{z^2} - 3 = 0\\
{z^2} + 2 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{z^2} = 3\\
{z^2} = - 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
z = \pm \sqrt 3 \\
z = \pm i\sqrt 2
\end{array} \right.
\end{array}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 5 phiếu

Các bài liên quan: - ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài