Tuyensinh247.com giảm 30% các khóa học từ ngày 10-14/8
Xem ngay

Chỉ còn: 10:22:43

Bài 2 trang 145 SGK Giải tích 12

Bình chọn:
3.3 trên 6 phiếu

Giải bài 2 trang 145 SGK Giải tích 12. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số khi a = 0

Đề bài

Cho hàm số: \(y =  - {1 \over 3}{x^3} + (a - 1){x^2} + (a + 3)x - 4.\)

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số khi \(a = 0.\)

b) Tính diện tích hình phẳng giới hạn bởi (C) và đường thẳng \(y = 0,\, x = -1,\, x = 1.\)

Phương pháp giải - Xem chi tiết

+) Thay \(a=0\) vào hàm số sau đó khảo sát và vẽ đồ thị hàm số theo các bước đã được học.

+) Hình phẳng được giới hạn bởi đường các đồ thị hàm số \(y=f(x);\) \(y=g(x)\) và các đường thẳng \(x=a; \, \, x=b \, (a<b)\) có diện tích được tính bởi công thức:  \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx.} \)

Lời giải chi tiết

a) Khi \(a = 0\) ta có hàm số: \(y =  - {1 \over 3}{x^3} - {x^2} + 3x - 4\)

- Tập xác định : \((-∞; +∞)\)

- Sự biến thiên: \(y’= -x^2 – 2x + 3\)

\(y’=0 ⇔ x = 1, x = -3\)

Trên các khoảng \((-∞;-3)\) và \((1; +∞), y’ < 0\) nên hàm số nghịch biến.

Trên khoảng \((-3; 1), y’ > 0\)

_ Cực trị:

Hàm số đạt cực đại tại \(x = 1\), \({y_{CD}} = {{ - 7} \over 3}\)

Hàm số đạt cực tiểu tại \(x = -3\), \({y_{CT}} =  - 13\)

_ giới hạn vô cực : \(\mathop {\lim }\limits_{x \to  + \infty }  =  - \infty ,\mathop {\lim }\limits_{x \to  - \infty }  =  + \infty \)

Bảng biến thiên:

Đồ thị hàm số:

Đồ thị cắt trục tung tại \(y = -4\)

Đồ thị cắt trục hoành tại \(x ≈ 5, 18\)

b) Hàm số \(y =  - {1 \over 3}{x^3} - {x^2} + 3x - 4\) đồng biến trên khoảng \((-3; 1)\) nên:

\(y < y(1) = {{ - 7} \over 3} < 0\),  \(∀x ∈ (-1; 1)\)

Do đó , diện tích cần tính là:

\(\begin{array}{l}
S = \int\limits_{ - 1}^1 {\left| { - \frac{1}{3}{x^3} - {x^2} + 3x - 4} \right|dx} = \int\limits_{ - 1}^1 {\left( {\frac{1}{3}{x^3} + {x^2} - 3x + 4} \right)dx} \\
\;\; = \left. {\left( {\frac{{{x^4}}}{{12}} + \frac{{{x^3}}}{3} - \frac{{3{x^2}}}{2} + 4x - 1} \right)} \right|_{ - 1}^1 = \frac{{23}}{{12}} + \frac{{27}}{4} = \frac{{26}}{3}.
\end{array}\)

loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan