Bài 4 trang 146 SGK Giải tích 12

Bình chọn:
3.7 trên 3 phiếu

Giải bài 4 trang 146 SGK Giải tích 12. Xét chuyển động thẳng xác định bởi phương trình:

Đề bài

Xét chuyển động thẳng xác định bởi phương trình: \(\displaystyle s(t) = {1 \over 4}{t^4} - {t^3} + {{{t^2}} \over 2} - 3t\)

Trong đó t được tính bằng giây và s được tính bằng mét.

a) Tính \(v(2), a(2)\), biết \(v(t), a(t)\) lần lượt là vận tốc, gia tốc của chuyển động đã cho

b) Tìm thời điểm \(t\) mà tại đó vận tốc bằng \(0\)

Phương pháp giải - Xem chi tiết

+) Sử dụng công thức: \(v(t)=s'(t); \, \, a(t) = s''(t).\)

+) Thay \(t=2\) và các biểu thức của \(v(t)\) và \(a(t)\) để tính.

+) Tại thời điểm vận tốc bằng \(0\) ta có phương trình \(v(t)=0.\) Giải phương trình tìm ẩn \(t.\)

Lời giải chi tiết

a) Ta có:

\(v(t) = s’(t) = {t^{3}} - 3{t^2} + t - 3.\)

\(a(t) = s’’(t) = 3t^2 – 6t + 1.\)

Do đó: \(v(2) = -5; a(2) = 1.\)

b) \(v(t) = 0 ⇔ t^3– 3t^2 + t – 3 = 0.\)

\(⇔ t = 3\)

Vậy tại thời điểm \( t  = 3\) thì vận tốc bằng \(0\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.