Câu hỏi 6 trang 145 SGK Giải tích 12


Trả lời câu hỏi 6 trang 145 sách giáo khoa Giải tích 12. Phát biểu định lí về quy tắc logarit, công thức đổi cơ số.

Đề bài

Phát biểu định lí về quy tắc logarit, công thức đổi cơ số.

Lời giải chi tiết

*Lôgarit và các phép toán:

Với \(\forall a,{b_1},{b_2} > 0,a \ne 1\) ta có:

+) \({\log _a}\left( {{b_1}{b_2}} \right) = {\log _a}{b_1} + {\log _a}{b_2}\)

+) \({\log _a}\left( {\dfrac{{{b_1}}}{{{b_2}}}} \right) = {\log _a}{b_1} - {\log _a}{b_2}\)

và \(∀a,b >0\) (a\(\ne\)1),  \(∀α\), \({\log _a}{b^\alpha } = \alpha {\log _a}b,{\log _a}\root n \of b  = {1 \over n}{\log _a}b\)

*Đổi cơ số:

\(∀a,b,c  >0\) (a, c\(\ne\)1), \({\log _a}b = {{{{\log }_c}b} \over {{{\log }_c}a}}\).

Đặc biệt \(∀a,b\) >0 (a,b \(\ne\)1) \({\log _a}b = {1 \over {{{\log }_b}a}}\)

và \(∀a,b >0\) (a\(\ne\)1),\( ∀α, β\) (\(α\ne 0\)), \({\log _{{a^\alpha }}}b = {1 \over \alpha }{\log _a}b,{\log _{{a^\alpha }}}{b^\beta } = {\beta  \over \alpha }{\log _a}b\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài