Bài 14 trang 148 SGK Giải tích 12


Giải bài 14 trang 148 SGK Giải tích 12. Tìm vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường

Đề bài

Tìm vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = 2x^2\) và \(y = x^3\) xung quanh trục Ox

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Tính thể tích vật tròn xoay khi xoay hình phẳng giới hạn bởi các đường \(y = f\left( x \right);\,\,y = g\left( x \right)\) xung quanh trục Ox.

Bước 1: Giải phương trình hoành độ giao điểm, suy ra các nghiệm \({x_1} < {x_2} < ... < {x_n}\)

Bước 2: Tính thể tích:

\(\begin{array}{l}
V = \pi \left[ {\int\limits_{{x_1}}^{{x_2}} {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} + \int\limits_{{x_2}}^{{x_3}} {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} + ...} \right.\\
\left. {+ \int\limits_{{x_n}}^{{x_n}} {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} } \right]
\end{array}\)

Lời giải chi tiết

Xét phương trình hoành độ giao điểm

\(\displaystyle 2{x^2} = {x^3} \Leftrightarrow {x^2}\left( {x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 2
\end{array} \right.\)

Vậy thể tích cần tìm là:

\(\displaystyle \begin{array}{l}
V = \pi \int\limits_0^2 {\left| {{{\left( {2{x^2}} \right)}^2} - {{\left( {{x^3}} \right)}^2}} \right|dx} = \pi \left| {\int\limits_0^2 {\left( {4{x^4} - {x^6}} \right)dx} } \right|\\
\,\,\,\, = \pi \left| {\left. {\left( {\frac{{4{x^5}}}{5} - \frac{{{x^7}}}{7}} \right)} \right|_0^2} \right| = \frac{{256}}{{35}}\pi
\end{array}\)

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

Các bài liên quan: - ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài