Bài tập trắc nghiệm trang 218, 219 SBT đại số và giải tích 11


Giải bài tập trắc nghiệm trang 218, 219 sách bài tập đại số và giải tích 11

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Lựa chọn câu để xem lời giải nhanh hơn

Chọn đáp án đúng:

5.124

Đạo hàm của hàm số y = x3 - 2x2 + x + 1 tại x = 0 bằng

A. 1          B. 0          C. 2          D. -2

Lời giải chi tiết:

\(\begin{array}{l}y' = 3{x^2} - 4x + 1\\y'\left( 0 \right) = 3.0 - 4.0 + 1 = 1\end{array}\)

Chọn đáp án: A

5.125

Hàm số \(y = \left\{ \begin{array}{l}2x\,voi\,x \ge 0\\ - 3x\,voi\,x < 0\end{array} \right.\) không có đạo hàm tại

A. x = 2          B. x = 1

C. x = 0          D. x = -1

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{y\left( x \right) - y\left( 0 \right)}}{{x - 0}}= \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{2x - 0}}{{x - 0}} = 2\\\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{y\left( x \right) - y\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{ - 3x - 0}}{{x - 0}} =  - 3\end{array}\)

\( \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{y\left( x \right) - y\left( 0 \right)}}{{x - 0}}\) \( \ne \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{y\left( x \right) - y\left( 0 \right)}}{{x - 0}}\)

\( \Rightarrow \) Hàm số không có đạo hàm tại \(x = 0\).

Chọn đáp án: C

5.126

Phương trình tiếp tuyến với đồ thị của hàm số y = x3 + 1 tại x = -1 là

A. y = 3x + 2            B. y = 3x - 2

C. y = 3x + 4            D. y = 3x + 3

Lời giải chi tiết:

Ta có: \(y' = 3{x^2}\) \( \Rightarrow y'\left( { - 1} \right) = 3\)

\({x_0} =  - 1 \Rightarrow y\left( { - 1} \right) = 0\)

Phương trình tiếp tuyến \(y = 3\left( {x + 1} \right) + 0\) hay \(y = 3x + 3\).

Chọn đáp án: D

5.127

Đạo hàm của hàm số \(y = \dfrac{{2x}}{{\sin x}}\) là

Lời giải chi tiết:

\(\begin{array}{l}y' = \dfrac{{\left( {2x} \right)'\sin x - 2x\left( {\sin x} \right)'}}{{{{\sin }^2}x}}\\ = \dfrac{{2\sin x - 2x\cos x}}{{{{\sin }^2}x}}\\ = \dfrac{{2\sin x}}{{{{\sin }^2}x}} - \dfrac{{2x\cos x}}{{{{\sin }^2}x}}\\ = \dfrac{2}{{\sin x}} - \dfrac{{2x\cot x}}{{\sin x}}\\ = \dfrac{{2 - 2x\cot x}}{{\sin x}}\\ = \dfrac{{2\left( {1 - x\cot x} \right)}}{{\sin x}}\end{array}\)

Chọn đáp án: B

5.128

Cho f(x) = x3/3 - 2x2 + m2x - 5. Tìm tham số m để f'(x) > 0 với mọi x ∈ R

A. m > 2            B. m > 2 hoặc m < -2

C. m < -2            D. m ∈ R

Lời giải chi tiết:

\(f'\left( x \right) = {x^2} - 4x + {m^2}\) có \(\Delta ' = 4 - {m^2}\)

Để \(f'\left( x \right) > 0,\forall x \in \mathbb{R}\) thì \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = 4 - {m^2} < 0\end{array} \right.\) \( \Leftrightarrow 4 - {m^2} < 0\) \( \Leftrightarrow \left[ \begin{array}{l}m > 2\\m <  - 2\end{array} \right.\)

Chọn đáp án: B

5.129

Cho f(x) = tan(2x3 - 5). Tìm f'(x)

Lời giải chi tiết:

\(\begin{array}{l}f'\left( x \right)\\ = \left( {2{x^3} - 5} \right)'.\dfrac{1}{{{{\cos }^2}\left( {2{x^3} - 5} \right)}}\\ = 2.3{x^2}.\dfrac{1}{{{{\cos }^2}\left( {2{x^3} - 5} \right)}}\\ = \dfrac{{6{x^2}}}{{{{\cos }^2}\left( {2{x^3} - 5} \right)}}\end{array}\)

Chọn đáp án: D

5.130

Tìm nghiệm của phương trình f''(x) = 0 biết f(x) = 3cosx - √3sinx

A. x = π/6 + kπ            B. x = π/4 + kπ

C. x = π/3 + kπ            D. x = kπ

Phương pháp giải:

HD: Tính f’’(x) rồi giải phương trình tanx = √3.

Lời giải chi tiết:

\(\begin{array}{l}f'\left( x \right) =  - 3\sin x - \sqrt 3 \cos x\\f''\left( x \right) =  - 3\cos x + \sqrt 3 \sin x\\f''\left( x \right) = 0\\ \Leftrightarrow  - 3\cos x + \sqrt 3 \sin x = 0\\ \Leftrightarrow \sqrt 3 \sin x = 3\cos x\\ \Leftrightarrow \sin x = \sqrt 3 \cos x\\ \Leftrightarrow \dfrac{{\sin x}}{{\cos x}} = \sqrt 3 \\ \Leftrightarrow \tan x = \sqrt 3  = \tan \dfrac{\pi }{3}\\ \Leftrightarrow x = \dfrac{\pi }{3} + k\pi ,k \in \mathbb{Z}\end{array}\)

Chọn đáp án: C

5.131

Cho y = tan3x. Tìm dy

Lời giải chi tiết:

\(\begin{array}{l}y' = 3{\tan ^2}x\left( {\tan x} \right)'\\ = 3{\tan ^2}x.\dfrac{1}{{{{\cos }^2}x}}\\ = 3.\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}}.\dfrac{1}{{{{\cos }^2}x}}\\ = \dfrac{{3{{\sin }^2}x}}{{{{\cos }^4}x}}\\ \Rightarrow dy = y'dx = \dfrac{{3{{\sin }^2}x}}{{{{\cos }^4}x}}dx\end{array}\)

Chọn đáp án: A

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.