Bài 5.115 trang 217 SBT đại số và giải tích 11


Giải bài 5.115 trang 217 SBT đại số và giải tích 11. Chứng minh rằng...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng \(f'\left( x \right) > 0\forall x \in R,\) nếu

LG a

\(f\left( x \right) = {2 \over 3}{x^9} - {x^6} + 2{x^3} - 3{x^2} + 6x - 1\)

Phương pháp giải:

Tính đạo hàm và suy ra đpcm. 

Lời giải chi tiết:

\(\eqalign{
& f'\left( x \right) = 6\left( {{x^8} - {x^5} + {x^2} - x + 1} \right) \cr 
& = 6{x^2}\left( {{x^6} - {x^3} + {1 \over 4}} \right) + 3{x^2} + 6\left( {{{{x^2}} \over 4} - x + 1} \right) \cr 
& = 6{x^2}{\left( {{x^3} - {1 \over 2}} \right)^2} + 3{x^2} + 6{\left( {{x \over 2} - 1} \right)^2} > 0,\forall x \in R. \cr} \)

LG b

\(f\left( x \right) = 2x + \sin x.\)

Phương pháp giải:

Tính đạo hàm và suy ra đpcm.

Lời giải chi tiết:

\(f'\left( x \right) = 2 + \cos x > 0,\forall x \in R.\)

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài