Bài 5.116 trang 217 SBT đại số và giải tích 11


Giải bài 5.116 trang 217 sách bài tập đại số và giải tích 11. Xác định a để...

Đề bài

Xác định a để \(f'\left( x \right) > 0\forall x \in R,\) biết rằng

\(f\left( x \right) = {x^3} + \left( {a - 1} \right){x^2} + 2x + 1.\)

Lời giải chi tiết

\(f'\left( x \right) = 3{x^2} + 2\left( {a - 1} \right)x + 2.\)

\(\Delta ' = {\left( {a - 1} \right)^2} - 6 = {a^2} - 2a - 5.\) Ta phải có

\(\Delta ' < 0 \Leftrightarrow {a^2} - 2a - 5 < 0 \Leftrightarrow 1 - \sqrt 6  < a < 1 + \sqrt 6 .\)

Vậy \(f'\left( x \right) > 0\) với mọi \(x \in R\) nếu \(1 - \sqrt 6  < a < 1 + \sqrt 6 .\)

 Loigiaihay.com


Bình chọn:
2.6 trên 10 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí