Bài 5.114 trang 217 SBT đại số và giải tích 11


Giải bài 5.114 trang 217 sách bài tập đại số và giải tích 11. Tìm đạo hàm của hàm số tại điểm đã chỉ ra :...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm đạo hàm của hàm số tại điểm đã chỉ ra

LG a

\(f\left( x \right) = {{\sqrt {x + 1} } \over {\sqrt {x + 1}  + 1}},\,\,f'\left( 0 \right) = ?\)

Phương pháp giải:

Tính đạo hàm và thay các giá trị ở đề bài vào tính toán. 

Lời giải chi tiết:

\(\begin{array}{l}
f\left( x \right) = \dfrac{{\sqrt {x + 1} }}{{\sqrt {x + 1} + 1}}\\
= \dfrac{{\sqrt {x + 1} + 1 - 1}}{{\sqrt {x + 1} + 1}}\\
= \dfrac{{\sqrt {x + 1} + 1}}{{\sqrt {x + 1} + 1}} - \dfrac{1}{{\sqrt {x + 1} + 1}}\\
= 1 - \dfrac{1}{{\sqrt {x + 1} + 1}}\\ 
f'\left( x \right) =0 - \dfrac{{ - \left( {\sqrt {x + 1} + 1} \right)'}}{{{{\left( {\sqrt {x + 1} + 1} \right)}^2}}}\\
= \dfrac{{\dfrac{{\left( {x + 1} \right)'}}{{2\sqrt {x + 1} }}}}{{{{\left( {\sqrt {x + 1} + 1} \right)}^2}}}\\
= \dfrac{1}{{2\sqrt {x + 1} {{\left( {\sqrt {x + 1} + 1} \right)}^2}}}\\
\Rightarrow f'\left( 0 \right) = \dfrac{1}{{2\sqrt 1 {{\left( {\sqrt 1 + 1} \right)}^2}}} = \dfrac{1}{8}
\end{array}\)

LG b

\(y = {\left( {4x + 5} \right)^2},\,y'\left( 0 \right) = ?\)

Lời giải chi tiết:

\(\begin{array}{l}
y' = 2\left( {4x + 5} \right)\left( {4x + 5} \right)'\\
= 2\left( {4x + 5} \right).4\\
= 8\left( {4x + 5} \right)\\
\Rightarrow y'\left( 0 \right) = 8.\left( {4.0 + 5} \right) = 40
\end{array}\)

LG c

\(g\left( x \right) = \sin 4x\cos 4x,\,g'\left( {{\pi  \over 3}} \right) = ?\)

Lời giải chi tiết:

\(\begin{array}{l}
g\left( x \right) = \sin 4x\cos 4x\\
= \dfrac{1}{2}.2\sin 4x\cos 4x\\
= \dfrac{1}{2}\sin 8x\\
g'\left( x \right) = \dfrac{1}{2}.8\cos 8x = 4\cos 8x\\
g'\left( {\dfrac{\pi }{3}} \right) = 4\cos \dfrac{{8\pi }}{3} = - 2
\end{array}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài