Bài 5.122 trang 218 SBT đại số và giải tích 11>
Giải bài 5.122 trang 218 sách bài tập đại số và giải tích 11. Chứng minh rằng tiếp tuyến của hypebol...
Đề bài
Chứng minh rằng tiếp tuyến của hypebol \(y = {{{a^2}} \over x}\) lập thành với các trục toạ độ một tam giác có diện tích không đổi.
Lời giải chi tiết
\(\displaystyle y = {{{a^2}} \over x} \Rightarrow y'\left( {{x_0}} \right) = - {{{a^2}} \over {x_0^2}}.\)
Phương trình tiếp tuyến tại \(\displaystyle M\left( {{x_0};{y_0}} \right)\) là
\(\displaystyle \eqalign{
& y - {{{a^2}} \over {{x_0}}} = - {{{a^2}} \over {x_0^2}}\left( {x - {x_0}} \right) \cr
& \Leftrightarrow y = - {{{a^2}x} \over {x_0^2}} + {{2{a^2}} \over {{x_0}}}. \cr} \)
Cho \(\displaystyle x = 0 \Rightarrow y = \dfrac{{2{a^2}}}{{{x_0}}}\) \(\displaystyle \Rightarrow A\left( {0;\dfrac{{2{a^2}}}{{{x_0}}}} \right)\)
Cho \(\displaystyle y = 0 \Rightarrow - \dfrac{{{a^2}x}}{{x_0^2}} + \dfrac{{2{a^2}}}{{{x_0}}} = 0\) \(\displaystyle \Leftrightarrow \dfrac{{{a^2}x}}{{x_0^2}} = \dfrac{{2{a^2}}}{{{x_0}}}\) \(\displaystyle \Leftrightarrow {a^2}x = 2{a^2}{x_0}\) \(\displaystyle \Leftrightarrow x = 2{x_0}\) \(\displaystyle \Rightarrow B\left( {2{x_0};0} \right)\)
Suy ra diện tích tam giác OAB là
\(\displaystyle S = {1 \over 2}.\left| {{{2{a^2}} \over {{x_0}}}} \right|.2\left| {{x_0}} \right| = 2{a^2} = const.\)
Loigiaihay.com
- Bài 5.123 trang 218 SBT đại số và giải tích 11
- Bài 5.121 trang 218 SBT đại số và giải tích 11
- Bài 5.120 trang 218 SBT đại số và giải tích 11
- Bài 5.119 trang 218 SBT đại số và giải tích 11
- Bài tập trắc nghiệm trang 218, 219 SBT đại số và giải tích 11
>> Xem thêm