Bài 5.122 trang 218 SBT đại số và giải tích 11


Giải bài 5.122 trang 218 sách bài tập đại số và giải tích 11. Chứng minh rằng tiếp tuyến của hypebol...

Đề bài

Chứng minh rằng tiếp tuyến của hypebol \(y = {{{a^2}} \over x}\) lập thành với các trục toạ độ một tam giác có diện tích không đổi.

Lời giải chi tiết

\(\displaystyle y = {{{a^2}} \over x} \Rightarrow y'\left( {{x_0}} \right) =  - {{{a^2}} \over {x_0^2}}.\)

Phương trình tiếp tuyến tại \(\displaystyle M\left( {{x_0};{y_0}} \right)\) là

\(\displaystyle \eqalign{
& y - {{{a^2}} \over {{x_0}}} = - {{{a^2}} \over {x_0^2}}\left( {x - {x_0}} \right) \cr 
& \Leftrightarrow y = - {{{a^2}x} \over {x_0^2}} + {{2{a^2}} \over {{x_0}}}. \cr} \)

Cho \(\displaystyle x = 0 \Rightarrow y = \dfrac{{2{a^2}}}{{{x_0}}}\) \(\displaystyle \Rightarrow A\left( {0;\dfrac{{2{a^2}}}{{{x_0}}}} \right)\)

Cho \(\displaystyle y = 0 \Rightarrow  - \dfrac{{{a^2}x}}{{x_0^2}} + \dfrac{{2{a^2}}}{{{x_0}}} = 0\) \(\displaystyle \Leftrightarrow \dfrac{{{a^2}x}}{{x_0^2}} = \dfrac{{2{a^2}}}{{{x_0}}}\) \(\displaystyle \Leftrightarrow {a^2}x = 2{a^2}{x_0}\) \(\displaystyle \Leftrightarrow x = 2{x_0}\) \(\displaystyle \Rightarrow B\left( {2{x_0};0} \right)\)

Suy ra diện tích tam giác OAB là

\(\displaystyle S = {1 \over 2}.\left| {{{2{a^2}} \over {{x_0}}}} \right|.2\left| {{x_0}} \right| = 2{a^2} = const.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài