Bài 3.42 trang 165 SBT hình học 10

Bình chọn:
4.9 trên 7 phiếu

Giải bài 3.42 trang 165 sách bài tập hình học 10. Cho phương trình ...

Lựa chọn câu để xem lời giải nhanh hơn

Cho phương trình \({x^2} + {y^2} - 2mx - 4(m - 2)y + 6 - m = 0\).(1)

LG a

Tìm điều kiện của m để (1) là phương tình của đường tròn, ta kí hiệu là (C m).

Phương pháp giải:

Phương trình \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình đường tròn \( \Leftrightarrow {a^2} + {b^2} - c > 0\).

Giải chi tiết:

 (1) là phương trình của đường tròn khi và chỉ khi

\({a^2} + {b^2} - c > 0\)\( \Leftrightarrow {m^2} + 4{(m - 2)^2} - 6 + m > 0\) \( \Leftrightarrow 5m - 15m + 10 > 0\)\( \Leftrightarrow \left[ \begin{array}{l}m < 1\\m > 2.\end{array} \right.\)

LG b

Tìm tập hợp các tâm của (C m) khi m thay đổi.

Phương pháp giải:

Tìm tọa độ tâm đường tròn theo tham số \(m\).

- Tìm mối quan hệ giữa \(x,y\) không phụ thuộc vào \(m\), từ đó suy ra tập hợp tâm đường tròn.

Giải chi tiết:

 (C m) có tâm I(x;y) thỏa mãn \(\left\{ \begin{array}{l}x = m\\y = 2(m - 2)\end{array} \right.\) \( \Leftrightarrow y = 2x - 4\)

Vậy tập hợp các tâm của (C m) là một phần của đường thẳng \(\Delta :y = 2x - 4\) thỏa mãn điều kiện giới hạn : \(x < 1\) hoặc \(x > 2\) .

Loigiaihay.com

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Góp ý Loigiaihay.com, nhận quà liền tay