Bài 2.6 trang 31 SBT đại số 10


Giải bài 2.6 trang 31 sách bài tập đại số 10. Xét tính chẵn, lẻ của các hàm số...

Đề bài

Xét tính chẵn, lẻ của các hàm số

a) \(y =  - 2\) ;

b) \(y = 3{x^2} - 1\) ; 

c) \(y =  - {x^4} + 3x - 2\) ;

d) \(y = \dfrac{{ - {x^4} + {x^2} + 1}}{x}\).

Phương pháp giải - Xem chi tiết

Ta xét với mỗi \(x \in D\) thì \( - x\) có thuộc \(D\) hay không và \(f( - x) = f(x)\) hay \(f( - x) = - f(x)\) hay \(f( - x) \ne f(x) \ne \) \(f\left( { - x} \right)\) rồi đưa ra kết luận dựa vào định nghĩa hàm số chẵn, hàm số lẻ.

Lời giải chi tiết

a) Tập xác định \(D = \mathbb{R}\) và \(\forall x \in D\) có \( - x \in D\) và \(f( - x) =  - 2 = f(x)\).

Hàm số là hàm số chẵn.

b) Tập xác định \(D = \mathbb{R}\); \(\forall x \in D\) có \( - x \in D\) và \(f( - x) = 3.{( - x)^2} - 1 = 3{x^2} - 1 \)\(= f(x)\).

Vậy hàm số đã cho là hàm số chẵn.

c) Tập xác định \(D = \mathbb{R}\), nhưng \(f(1) =  - 1 + 3 - 2 = 0\) còn \(f( - 1) =  - 1 - 3 - 2 =  - 6\) nên \(f( - 1) \ne f(1)\) và \(f( - 1) \ne  - f(1)\)

Vậy hàm số đã cho không là hàm số chẵn cũng không là hàm số lẻ.

d) Tập xác định \(D = \mathbb{R}\backslash \left\{ 0 \right\}\) nên nếu \(x \ne 0\) và\(x \in D\)thì \( - x \in D\). Ngoài ra, \(f( - x) = \dfrac{{ - {{( - x)}^4} + {{( - x)}^2} + 1}}{{ - x}} \)\(= \dfrac{{ - {x^4} + {x^2} + 1}}{{ - x}} = -\dfrac{{ - {x^4} + {x^2} + 1}}{x} \)\(=  - f(x)\).

Vậy hàm số đã cho là hàm số lẻ.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 4 phiếu

Các bài liên quan: - Bài 1: Hàm số

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài