Bài 2.5 trang 31 SBT đại số 10


Giải bài 2.5 trang 31 sách bài tập đại số 10. Xét tính đồng biến, nghịch biến của hàm số trên các khoảng tương ứng...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Xét tính đồng biến, nghịch biến của hàm số trên các khoảng tương ứng

LG a

 \(y =  - 2x + 3\) trên R.

Phương pháp giải:

Xét \(T = \frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}}\).

Nếu \(T > 0\;\forall x \in K\) , với K là tâp đang xét, thì hàm số \(y = f(x)\) đồng biến trên K

Nếu \(T < 0\;\forall x \in K\) , với K là tâp đang xét, thì hàm số \(y = f(x)\) nghịch biến trên K

Lời giải chi tiết:

Xét \(y = f(x) = 2x + 3\) trên R

Ta có:

\(\begin{array}{*{20}{l}}
{T = \frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}} = \frac{{\left( {2{x_2} + 3} \right) - \left( {2{x_1} + 3} \right)}}{{{x_2} - {x_1}}}}\\
{ = \frac{{2{x_2} + 3 - 2{x_1} - 3}}{{{x_2} - {x_1}}} = \frac{{2({x_2} - {x_1})}}{{{x_2} - {x_1}}} = 2 > 0}
\end{array}\)

Vậy hàm số \(y = 2x + 3\) đồng biến trên R.

LG b

 \(y = {x^2} + 10x + 9\) trên \(( - 5; + \infty )\);

Phương pháp giải:

Xét \(T = \frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}}\).

Nếu \(T > 0\;\forall x \in K\) , với K là tâp đang xét, thì hàm số \(y = f(x)\) đồng biến trên K

Nếu \(T < 0\;\forall x \in K\) , với K là tâp đang xét, thì hàm số \(y = f(x)\) nghịch biến trên K

Lời giải chi tiết:

Xét hàm số: \(y = f(x) = {x^2} + 10x + 9\)

Ta có:

\(\begin{array}{*{20}{l}}
{y = f(x) = {x^2} + 10x + 9}\\
{T = \frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}} = \frac{{\left( {{x_2}^2 + 10{x_2} + 9} \right) - \left( {{x_1}^2 + 10{x_1} + 9} \right)}}{{{x_2} - {x_1}}}}\\
{ = \frac{{{x_2}^2 + 10{x_2} + 9 - {x_1}^2 - 10{x_1} - 9}}{{{x_2} - {x_1}}} = \frac{{{x_2}^2 - {x_1}^2 + 10{x_2} - 10{x_1}}}{{{x_2} - {x_1}}}}\\
{ = \frac{{\left( {{x_2} - {x_1}} \right)\left( {{x_2} + {x_1} + 10} \right)}}{{{x_2} - {x_1}}} = {x_2} + {x_1} + 10.}
\end{array}\)

Mà \({x_2},{x_1} >  - 5 \Rightarrow {x_2} + {x_1} + 10 > 0\) hay T > 0.

Vậy hàm số \(y = f(x) = {x^2} + 10x + 9\) đồng biến trên \(\left( { - 5; + \infty } \right)\)

LG c

 \(y =  - \dfrac{1}{{x + 1}}\) trên \(( - 3; - 2)\) và (2 ;3).

Phương pháp giải:

Xét \(T = \frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}}\).

Nếu \(T > 0\;\forall x \in K\) , với K là tâp đang xét, thì hàm số \(y = f(x)\) đồng biến trên K

Nếu \(T < 0\;\forall x \in K\) , với K là tâp đang xét, thì hàm số \(y = f(x)\) nghịch biến trên K

Lời giải chi tiết:

Xét phương trình: \(y = f(x) = \frac{1}{{x + 1}}\) trên \(( - 3; - 2)\) và \((2;3)\)

Ta có:

\(\begin{array}{*{20}{l}}
{T = \frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}} = \frac{{\frac{1}{{{x_2} + 1}} - \frac{1}{{{x_1} + 1}}}}{{{x_2} - {x_1}}}}\\
{ = \frac{{\frac{{{x_1} + 1}}{{\left( {{x_2} + 1} \right)\left( {{x_1} + 1} \right)}} - \frac{{{x_2} + 1}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}}}{{{x_2} - {x_1}}}}\\
{ = \frac{{\frac{{{x_1} - {x_2}}}{{\left( {{x_2} + 1} \right)\left( {{x_1} + 1} \right)}}}}{{{x_2} - {x_1}}} = \frac{{ - 1}}{{\left( {{x_2} + 1} \right)\left( {{x_1} + 1} \right)}}}
\end{array}\)

Dễ thấy:

+ Với \(x \in ( - 3; - 2)\)

\(\begin{array}{*{20}{l}}
{{x_2},{x_1} \in ( - 3; - 2) \Rightarrow {x_2} + 1;{x_1} + 1 < 0}\\
{ \Rightarrow \left( {{x_2} + 1} \right)\left( {{x_1} + 1} \right) > 0 \Rightarrow T < 0}
\end{array}\)

Vậy hàm số \(y = f(x) = \frac{1}{{x + 1}}\) nghịch biến trên \(( - 3; - 2)\)

+ Với \(x \in (2;3)\)

\(\begin{array}{*{20}{l}}
{{x_2},{x_1} \in (2;3) \Rightarrow {x_2} + 1;{x_1} + 1 > 0}\\
{ \Rightarrow \left( {{x_2} + 1} \right)\left( {{x_1} + 1} \right) > 0 \Rightarrow T < 0}
\end{array}\)

Vậy hàm số \(y = f(x) = \frac{1}{{x + 1}}\) nghịch biến trên \(( 2;3)\)


Bình chọn:
3.8 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!