Bài 1.3 trang 12 SBT đại số và giải tích 11


Giải bài 1.3 trang 12 sách bài tập đại số và giải tích 11. Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số...

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số

LG a

\(y = 3 - 2\left| {\sin x} \right|\)

Phương pháp giải:

Hàm số \(y = \sin x\) có \( - 1 \le \sin x \le 1,\forall x \in \mathbb{R}\)

\( \Leftrightarrow 0 \le \left| {\sin x} \right| \le 1,\forall x \in \mathbb{R}\)

Lời giải chi tiết:

\(\begin{array}{l}0 \le \left| {\sin x} \right| \le 1 \Leftrightarrow  - 2 \le  - 2\left| {\sin x} \right| \le 0\\ \Leftrightarrow 3 - 2 \le 3 - 2\left| {{\mathop{\rm s}\nolimits} {\rm{inx}}} \right| \le 3\\ \Leftrightarrow 1 \le 3 - 2\left| {{\mathop{\rm s}\nolimits} {\rm{inx}}} \right| \le 3\end{array}\)

Vậy GTLN của hàm số \(y = 3 - 2\left| {\sin x} \right|\) là 3 đạt được khi

\(\sin x = 0 \Leftrightarrow x = k\pi ,k \in \mathbb{Z}\)

GTNN của hàm số \(y = 3 - 2\left| {\sin x} \right|\)  là 1 đạt được khi 

\(\sin x =  \pm 1 \Leftrightarrow x =  \pm \dfrac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\).

LG b

\(y = \cos x + \cos \left( {x - \dfrac{\pi }{3}} \right)\)

Phương pháp giải:

Sử dụng công thức phân tích tổng thành tích thu gọn hàm số.

Sử dụng lý thuyết \( - 1 \le \cos x \le 1,\forall x \in \mathbb{R}\) để đánh giá biểu thức ở trên.

Lời giải chi tiết:

Ta có: \(\cos x + \cos \left( {x - \dfrac{\pi }{3}} \right)\)

\(\begin{array}{l} = 2\cos \left( {x - \dfrac{\pi }{6}} \right)\cos \dfrac{\pi }{6}\\ = \sqrt 3 \cos \left( {x - \dfrac{\pi }{6}} \right)\end{array}\)

Do \( - 1 \le \cos (x - \dfrac{\pi }{6}) \le 1\)

\( \Leftrightarrow  - \sqrt 3  \le \sqrt 3 \cos (x - \dfrac{\pi }{6}) \le \sqrt 3 \)

Vậy hàm số  \(y = \cos x + \cos \left( {x - \dfrac{\pi }{3}} \right)\) có GTLN là \(\sqrt 3 \) đạt được khi \(\cos \left( {x - \dfrac{\pi }{6}} \right) = 1\)

\(\begin{array}{l} \Leftrightarrow x - \dfrac{\pi }{6} = k2\pi \\ \Leftrightarrow x = \dfrac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\end{array}\)

GTNN là\( - \sqrt 3 \) đạt được khi \(\cos \left( {x - \dfrac{\pi }{6}} \right) =  - 1\)

\(\begin{array}{l} \Leftrightarrow x - \dfrac{\pi }{6} = \pi  + k2\pi \\ \Leftrightarrow x = \dfrac{{7\pi }}{6} + k2\pi ,k \in \mathbb{Z}\end{array}\)

LG c

\(y = {\cos ^2}x + 2\cos 2x\)

Phương pháp giải:

Sử dụng công thức nhân đôi để thu gọn biểu thức

Sử dụng lý thuyết \( - 1 \le \cos x \le 1,\forall x \in \mathbb{R}\) để đánh giá biểu thức ở trên.

Lời giải chi tiết:

Ta có:

\({\cos ^2}x + 2\cos 2x\)

\(\begin{array}{l} = \dfrac{{1 + \cos 2x}}{2} + 2\cos 2x\\ = \dfrac{{1 + 5\cos 2x}}{2}\end{array}\)

Do \( - 1 \le \cos 2x \le 1\)

\(\begin{array}{l} \Leftrightarrow  - 5 \le 5\cos 2x \le 5\\ \Leftrightarrow 1 - 5 \le 1 + 5\cos 2x \le 1 + 5\\ \Leftrightarrow \dfrac{{1 - 5}}{2} \le \dfrac{{1 + 5\cos 2x}}{2} \le \dfrac{{1 + 5}}{2}\\ \Leftrightarrow  - 2 \le \dfrac{{1 + 5\cos 2x}}{2} \le 3\end{array}\)

Vậy hàm số  \(y = {\cos ^2}x + 2\cos 2x\) có GTLN là \(3\)

đạt được khi \(\cos 2x = 1 \Leftrightarrow 2x = k2\pi \)

\( \Leftrightarrow x = k\pi ,k \in \mathbb{Z}\)

GTNN là \( - 2\)  đạt được khi \(\cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi \)

\( \Leftrightarrow x = \dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

LG d

\(y = \sqrt {5 - 2{{\cos }^2}x{{\sin }^2}x} \)

Phương pháp giải:

Sử dụng công thức nhân đôi để thu gọn biểu thức

Hàm số \(y = \sin x\) có \( - 1 \le \sin x \le 1,\forall x \in \mathbb{R}\)

\(\begin{array}{l} \Leftrightarrow 0 \le \left| {\sin x} \right| \le 1\\ \Leftrightarrow 0 \le {\sin ^2}x \le 1,\forall x \in \mathbb{R}\end{array}\)

Lời giải chi tiết:

Ta có: \(5 - 2{\cos ^2}x{\sin ^2}x = 5 - \dfrac{1}{2}{\sin ^2}2x\)

Do \(0 \le {\sin ^2}2x \le 1\)

 \(\begin{array}{l}\Leftrightarrow  - 1 \le  - {\sin ^2}2x \le 0{\rm{ }}\\ \Leftrightarrow  - \dfrac{1}{2} \le  - \dfrac{1}{2}{\sin ^2}2x \le 0{\rm{ }}\\ \Leftrightarrow 5 - \dfrac{1}{2} \le 5 - \dfrac{1}{2}{\sin ^2}2x \le 5\\ \Leftrightarrow \dfrac{9}{2} \le 5 - \dfrac{1}{2}{\sin ^2}2x \le 5\\ \Leftrightarrow {\rm{ }}\dfrac{{3\sqrt 2 }}{2} \le \sqrt {5 - \dfrac{1}{2}{{\sin }^2}2x}  \le \sqrt 5 \end{array}\)

Vậy hàm số  \(y = \sqrt {5 - 2{{\cos }^2}x{{\sin }^2}x} \) có GTLN là \(\sqrt 5 \)  đạt được khi \( - {\sin ^2}2x = 0 \Leftrightarrow \sin 2x = 0\)

 \(\begin{array}{l} \Leftrightarrow 2x = k\pi \\ \Leftrightarrow x = k\dfrac{\pi }{2},k \in \mathbb{Z}\end{array}\)

GTNN là \(\dfrac{{3\sqrt 2 }}{2}\)  đạt được khi \( - {\sin ^2}2x =  - 1 \Leftrightarrow \sin 2x =  \pm 1\)

\( \Leftrightarrow 2x =  \pm \dfrac{\pi }{2} + k2\pi \)

\(\Leftrightarrow x =  \pm \dfrac{\pi }{4} + k\pi \)

\(\Leftrightarrow x = \dfrac{\pi }{4} + k\dfrac{\pi }{2},k \in \mathbb{Z}\).

 Loigiaihay.com


Bình chọn:
4.4 trên 12 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.