Bài 1.2 trang 12 SBT đại số và giải tích 11


Giải bài 1.2 trang 12 sách bài tập đại số và giải tích 11. Tìm tập xác định của các hàm số...

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của các hàm số

LG a

\(y = \sqrt {\cos x + 1} \)

Phương pháp giải:

Điều kiện xác định của hàm số \(y = \sqrt {f(x)} \) là \(f(x) \ge 0\)

Lời giải chi tiết:

Điều kiện xác định: \(\cos x + 1 \ge 0\)

Ta có:

\(\begin{array}{l}
- 1 \le \cos x \le 1\\
\Rightarrow - 1 + 1 \le \cos x + 1 \le 1 + 1\\
\Rightarrow 0 \le \cos x + 1 \le 2\\
\Rightarrow \cos x + 1 \ge 0,\forall x \in \mathbb{R}
\end{array}\)

Vậy \({\rm{D  =  }}\mathbb{R}\).

LG b

\(y = \dfrac{3}{{{{\sin }^2}x - {{\cos }^2}x}}\)

Phương pháp giải:

Điều kiện xác định của hàm số \(y = \dfrac{{f(x)}}{{g(x)}}\) là \(g(x) \ne 0\)

Lời giải chi tiết:

Điều kiện xác định:

\(\begin{array}{l}
{\sin ^2}x - {\cos ^2}x \ne 0\\
\Leftrightarrow {\cos ^2}x - {\sin ^2}x \ne 0\\
\Leftrightarrow \cos 2x \ne 0\\
\Leftrightarrow 2x \ne \frac{\pi }{2} + k\pi \\
\Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2},k \in \mathbb{Z}
\end{array}\)

Vậy \({\rm{D  =  }}\mathbb{R}{\rm{\backslash }}\left\{ {\dfrac{\pi }{4} + k\dfrac{\pi }{2},k \in \mathbb{Z}} \right\}\).

LG c

\(y = \dfrac{2}{{\cos x - \cos 3x}}\) \(\)

Phương pháp giải:

Điều kiện xác định của hàm số \(y = \dfrac{{f(x)}}{{g(x)}}\) là \(g(x) \ne 0\)

Lời giải chi tiết:

Điều kiện xác định:

\(\begin{array}{l}
\cos x - \cos 3x \ne 0\\
\Leftrightarrow - 2\sin 2x\sin x \ne 0\\
\Leftrightarrow \left\{ \begin{array}{l}
\sin 2x \ne 0\\
\sin x \ne 0
\end{array} \right.\\
\Leftrightarrow \sin 2x \ne 0
\end{array}\)

(Vì \(\sin 2x \ne 0\) suy ra \(\sin x \ne 0\))

\( \Leftrightarrow 2x \ne k\pi \)

\(\begin{array}{l} \Leftrightarrow x \ne k\dfrac{{\pi }}{2} ,k \in \mathbb{Z}\end{array}\)

Vậy \(D = \mathbb{R}\backslash \left\{ {k\dfrac{{\pi }}{2},k \in \mathbb{Z}} \right\}\).

Chú ý:

Các em cũng có thể biến đổi như sau:

\(\begin{array}{l}
- 2\sin 2x\sin x \ne 0\\
\Leftrightarrow - 2.2\sin x\cos x.\sin x \ne 0\\
\Leftrightarrow - 4{\sin ^2}x\cos x \ne 0\\
\Leftrightarrow \left\{ \begin{array}{l}
\sin x \ne 0\\
\cos x \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne k\pi \\
x \ne \frac{\pi }{2} + k\pi
\end{array} \right.\\
\Leftrightarrow x \ne \frac{{k\pi }}{2},k \in Z
\end{array}\)

LG d

\(y = \tan x + \cot x\)

Phương pháp giải:

Điều kiện xác định của hàm số \(y = \tan x = \dfrac{{\sin x}}{{\cos x}}\) là \(\cos x \ne 0\)

Điều kiện xác định của hàm số \(y = \cot x = \dfrac{{\cos x}}{{\sin x}}\) là \(\sin x \ne 0\)

Lời giải chi tiết:

Điều kiện xác định:

\(\left\{ \begin{array}{l}
\sin x \ne 0\\
\cos x \ne 0
\end{array} \right. \) \(\Leftrightarrow \sin x\cos x \ne 0 \\\Leftrightarrow  2\sin x\cos x \ne 0 \) \(\Leftrightarrow \sin 2x \ne 0 \) \(\Leftrightarrow 2x \ne k\pi \\ \Leftrightarrow x \ne \frac{{k\pi }}{2}\)

Vậy tập xác định là:\(D = \mathbb{R}\backslash \left\{ {k\dfrac{{\pi }}{2},k \in \mathbb{Z}} \right\}\).

 Loigiaihay.com


Bình chọn:
4 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.