Bài 1.2 trang 12 SBT đại số và giải tích 11


Giải bài 1.2 trang 12 sách bài tập đại số và giải tích 11. Tìm tập xác định của các hàm số...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của các hàm số

LG a

\(y = \sqrt {\cos x + 1} \)

Phương pháp giải:

Điều kiện xác định của hàm số \(y = \sqrt {f(x)} \) là \(f(x) \ge 0\)

Lời giải chi tiết:

Điều kiện xác định: \(\cos x + 1 \ge 0\)

Ta có:

\(\begin{array}{l}
- 1 \le \cos x \le 1\\
\Rightarrow - 1 + 1 \le \cos x + 1 \le 1 + 1\\
\Rightarrow 0 \le \cos x + 1 \le 2\\
\Rightarrow \cos x + 1 \ge 0,\forall x \in \mathbb{R}
\end{array}\)

Vậy \({\rm{D  =  }}\mathbb{R}\).

Quảng cáo

Lộ trình SUN 2026

LG b

\(y = \dfrac{3}{{{{\sin }^2}x - {{\cos }^2}x}}\)

Phương pháp giải:

Điều kiện xác định của hàm số \(y = \dfrac{{f(x)}}{{g(x)}}\) là \(g(x) \ne 0\)

Lời giải chi tiết:

Điều kiện xác định:

\(\begin{array}{l}
{\sin ^2}x - {\cos ^2}x \ne 0\\
\Leftrightarrow {\cos ^2}x - {\sin ^2}x \ne 0\\
\Leftrightarrow \cos 2x \ne 0\\
\Leftrightarrow 2x \ne \frac{\pi }{2} + k\pi \\
\Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2},k \in \mathbb{Z}
\end{array}\)

Vậy \({\rm{D  =  }}\mathbb{R}{\rm{\backslash }}\left\{ {\dfrac{\pi }{4} + k\dfrac{\pi }{2},k \in \mathbb{Z}} \right\}\).

LG c

\(y = \dfrac{2}{{\cos x - \cos 3x}}\) \(\)

Phương pháp giải:

Điều kiện xác định của hàm số \(y = \dfrac{{f(x)}}{{g(x)}}\) là \(g(x) \ne 0\)

Lời giải chi tiết:

Điều kiện xác định:

\(\begin{array}{l}
\cos x - \cos 3x \ne 0\\
\Leftrightarrow - 2\sin 2x\sin x \ne 0\\
\Leftrightarrow \left\{ \begin{array}{l}
\sin 2x \ne 0\\
\sin x \ne 0
\end{array} \right.\\
\Leftrightarrow \sin 2x \ne 0
\end{array}\)

(Vì \(\sin 2x \ne 0\) suy ra \(\sin x \ne 0\))

\( \Leftrightarrow 2x \ne k\pi \)

\(\begin{array}{l} \Leftrightarrow x \ne k\dfrac{{\pi }}{2} ,k \in \mathbb{Z}\end{array}\)

Vậy \(D = \mathbb{R}\backslash \left\{ {k\dfrac{{\pi }}{2},k \in \mathbb{Z}} \right\}\).

Chú ý:

Các em cũng có thể biến đổi như sau:

\(\begin{array}{l}
- 2\sin 2x\sin x \ne 0\\
\Leftrightarrow - 2.2\sin x\cos x.\sin x \ne 0\\
\Leftrightarrow - 4{\sin ^2}x\cos x \ne 0\\
\Leftrightarrow \left\{ \begin{array}{l}
\sin x \ne 0\\
\cos x \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne k\pi \\
x \ne \frac{\pi }{2} + k\pi
\end{array} \right.\\
\Leftrightarrow x \ne \frac{{k\pi }}{2},k \in Z
\end{array}\)

LG d

\(y = \tan x + \cot x\)

Phương pháp giải:

Điều kiện xác định của hàm số \(y = \tan x = \dfrac{{\sin x}}{{\cos x}}\) là \(\cos x \ne 0\)

Điều kiện xác định của hàm số \(y = \cot x = \dfrac{{\cos x}}{{\sin x}}\) là \(\sin x \ne 0\)

Lời giải chi tiết:

Điều kiện xác định:

\(\left\{ \begin{array}{l}
\sin x \ne 0\\
\cos x \ne 0
\end{array} \right. \) \(\Leftrightarrow \sin x\cos x \ne 0 \\\Leftrightarrow  2\sin x\cos x \ne 0 \) \(\Leftrightarrow \sin 2x \ne 0 \) \(\Leftrightarrow 2x \ne k\pi \\ \Leftrightarrow x \ne \frac{{k\pi }}{2}\)

Vậy tập xác định là:\(D = \mathbb{R}\backslash \left\{ {k\dfrac{{\pi }}{2},k \in \mathbb{Z}} \right\}\).

 Loigiaihay.com


Bình chọn:
4 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí