Bài 1.11 trang 14 SBT đại số và giải tích 11>
Giải bài 1.11 trang 14 sách bài tập đại số và giải tích 11. Giá trị nhỏ nhất của hàm số...
Đề bài
Tìm giá trị nhỏ nhất của hàm số \(y = 1 - \cos x - \sin x\) là
A. \( - \dfrac{1}{2}\) B. \( - 1\)
C. \(1 - \sqrt 2 \) D. \( - \sqrt 2 \)
Phương pháp giải - Xem chi tiết
Sử dụng công thức tổng thành tích để rút gọn hàm số.
Hàm số \(y=\cos x\) có \(\cos x\le 1\)
Lời giải chi tiết
Ta có:
\(y=1-\cos x - \sin x\)
\(=1-(\cos x + \sin x)\)
\(=1-[ \cos x + \cos (\dfrac{\pi }{2} - x)]\)
\( =1 - 2\cos \dfrac{\pi }{4}\cos (x - \dfrac{\pi }{4})\)
\( = 1 - 2.\dfrac{{\sqrt 2 }}{2}\cos \left( {x - \dfrac{\pi }{4}} \right)\)
\( =1- \sqrt 2 \cos (x - \dfrac{\pi }{4})\)
Mà \(\cos (x - \dfrac{\pi }{4})\le 1\)
\(\begin{array}{l}
\Rightarrow - \sqrt 2 \cos \left( {x - \frac{\pi }{4}} \right) \ge - \sqrt 2 \\
\Rightarrow 1 - \sqrt 2 \cos \left( {x - \frac{\pi }{4}} \right) \ge 1 - \sqrt 2
\end{array}\)
\(\Leftrightarrow y\ge 1-\sqrt2\)
Vậy giá trị nhỏ nhất của hàm số \(y\) là \(1-\sqrt 2 \) đạt được khi \(x = \dfrac{\pi }{4}\).
Đáp án C.
Chú ý:
Hàm số đạt giá trị nhỏ nhất khi cosx + sinx đạt giá trị lớn nhất.
Mà (cosx + sinx)2 = 1 + sin2x ≤ 2.
Giá trị lớn nhất của (cosx + sinx)2 bằng 2, đạt được khi sin2x = 1.
Vậy cosx + sinx đạt giá trị lớn nhất bằng √2.
Từ đó suy ra GTNN của hàm số đã cho.
Loigiaihay.com
- Bài 1.12 trang 14 SBT đại số và giải tích 11
- Bài 1.13 trang 14 SBT đại số và giải tích 11
- Bài 1.10 trang 14 SBT đại số và giải tích 11
- Bài 1.9 trang 13 SBT đại số và giải tích 11
- Bài 1.8 trang 13 SBT đại số và giải tích 11
>> Xem thêm