Bài 11 trang 147 SGK Giải tích 12


Tính các tích phân sau bằng phương pháp tính tích phân từng phần

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính các tích phân sau bằng phương pháp tính tích phân từng phần

LG a

a) \(\int_1^{{e^4}} {\sqrt x } \ln xdx\)

Phương pháp giải:

+) Sử dụng các công thức nguyên hàm cơ bản để tính tích phân.

+) Sử dụng phương pháp đưa vào vi phân.

+) Sử dụng công thức tích phân từng phần: \(\int\limits_a^b {u\left( x \right)dv\left( x \right)}  = \left. {u\left( x \right).v\left( x \right)} \right|_a^b - \int\limits_a^b {v\left( x \right)du\left( x \right).} \)

Lời giải chi tiết:

Đặt  \(\left\{ \begin{array}{l}u = \ln x\\dv = \sqrt x dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = \dfrac{2}{3}{x^{\frac{3}{2}}}\end{array} \right..\)

\(\begin{array}{l}
\Rightarrow \int\limits_1^{{e^4}} {\sqrt x \ln xdx} = \left. {\dfrac{2}{3}{x^{\frac{3}{2}}}\ln x} \right|_1^{{e^4}} - \int\limits_1^{{e^4}} {\dfrac{2}{3}{x^{\frac{3}{2}}}.\dfrac{1}{x}dx} \\
= \dfrac{8}{3}{e^6} - \int\limits_1^{{e^4}} {\dfrac{2}{3}{x^{\frac{1}{2}}}dx} = \dfrac{8}{3}{e^6} - \left. {\dfrac{2}{3}.\dfrac{2}{3}{x^{\frac{3}{2}}}} \right|_1^{{e^4}}\\
= \dfrac{8}{3}{e^6} - \dfrac{4}{9}{e^6} + \dfrac{4}{9}= \dfrac{20}{9}{e^6}+ \dfrac{4}{9}.
\end{array}\)

LG b

b) \(\displaystyle \int_{{\pi  \over 6}}^{{\pi  \over 2}} {{{xdx} \over {{{\sin }^2}x}}} \)

Lời giải chi tiết:

Ta có: 

\(\eqalign{
& \int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} = \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {xd( - \cot x) = - x\cot x\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right.} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {\cot xdx} \cr 
& = {{\pi \sqrt 3 } \over 6} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {{{d\sin x} \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}}} = {{\pi \sqrt 3 } \over 6} + \ln |sinx|\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right. = {{\pi \sqrt 3 } \over 6} + \ln 2 \cr} \)

Cách trình bày khác:

Đặt \(\left\{ \begin{array}{l}u = x\\dv = \dfrac{1}{{{{\sin }^2}x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \cot x\end{array} \right.\)

Khi đó \(I = \left. { - x\cot x} \right|_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} + \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} {\cot xdx} \)\( = \dfrac{\pi }{6}.\sqrt 3  + \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} {\dfrac{{\cos x}}{{\sin x}}dx} \)

Đặt \(\sin x = t \Rightarrow dt = \cos xdx\)

Đổi cận \(x = \dfrac{\pi }{6} \Rightarrow t = \dfrac{1}{2},\) \(x = \dfrac{\pi }{2} \Rightarrow t = 1\)

\( \Rightarrow I = \dfrac{\pi }{6}.\sqrt 3  + \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{dt}}{t}} \) \( = \sqrt 3 .\dfrac{\pi }{6} + \left. {\ln \left| t \right|} \right|_{\dfrac{1}{2}}^1 = \sqrt 3 .\dfrac{\pi }{6} - \ln \dfrac{1}{2}\)  \( = \dfrac{{\sqrt 3 \pi }}{6} + \ln 2\)

LG c

c) \(\int_0^\pi  {(\pi  - x)\sin {\rm{x}}dx} \)

Lời giải chi tiết:

Ta có: 

\(\eqalign{
& \int_0^\pi {(\pi - x)\sin {\rm{x}}dx} = \int\limits_0^\pi {(\pi - x)d( - {\mathop{\rm cosx}\nolimits} )} \cr 
& = - (\pi - x)cosx\left| {_0^\pi } \right. + \int\limits_0^\pi {{\mathop{\rm cosxd}\nolimits} (\pi - x) = \pi - s{\rm{inx}}\left| {_0^\pi } \right.} = \pi \cr} \)

Cách trình bày khác:

Đặt \(\left\{ \begin{array}{l}u = \pi  - x\\dv = \sin xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du =  - dx\\v =  - \cos x\end{array} \right.\)

\( \Rightarrow I = \left. { - \left( {\pi  - x} \right)\cos x} \right|_0^\pi  - \int\limits_0^\pi  {\cos xdx} \) \( = \pi  - \left. {\sin x} \right|_0^\pi  = \pi  + 0 - 0 = \pi \)

LG d

d) \(\int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx\)

Lời giải chi tiết:

Ta có: 

\(\eqalign{
& \int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx = \int\limits_{ - 1}^0 {(2x + 3)d( - {e^{ - x}}} ) \cr 
& = (2x + 3){e^{ - x}}\left| {_0^{ - 1}} \right. + \int\limits_{ - 1}^e {{e^{ - x}}} .2dx = e - 3 + 2{e^{ - x}}\left| {_0^1} \right. = 3e - 5 \cr} \)

Cách trình bày khác:

Đặt \(\left\{ \begin{array}{l}u = 2x + 3\\dv = {e^{ - x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2dx\\v =  - {e^{ - x}}\end{array} \right.\)

\( \Rightarrow I = \left. { - \left( {2x + 3} \right){e^{ - x}}} \right|_{ - 1}^0 + 2\int\limits_{ - 1}^0 {{e^{ - x}}dx} \) \( =  - 3 + e - \left. {2{e^{ - x}}} \right|_{ - 1}^0\) \( =  - 3 + e - 2 + 2e = 3e - 5\)

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.