Bài 11 trang 147 SGK Giải tích 12>
Tính các tích phân sau bằng phương pháp tính tích phân từng phần
Video hướng dẫn giải
Tính các tích phân sau bằng phương pháp tính tích phân từng phần
LG a
a) \(\int_1^{{e^4}} {\sqrt x } \ln xdx\)
Phương pháp giải:
+) Sử dụng các công thức nguyên hàm cơ bản để tính tích phân.
+) Sử dụng phương pháp đưa vào vi phân.
+) Sử dụng công thức tích phân từng phần: \(\int\limits_a^b {u\left( x \right)dv\left( x \right)} = \left. {u\left( x \right).v\left( x \right)} \right|_a^b - \int\limits_a^b {v\left( x \right)du\left( x \right).} \)
Lời giải chi tiết:
Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = \sqrt x dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = \dfrac{2}{3}{x^{\frac{3}{2}}}\end{array} \right..\)
\(\begin{array}{l}
\Rightarrow \int\limits_1^{{e^4}} {\sqrt x \ln xdx} = \left. {\dfrac{2}{3}{x^{\frac{3}{2}}}\ln x} \right|_1^{{e^4}} - \int\limits_1^{{e^4}} {\dfrac{2}{3}{x^{\frac{3}{2}}}.\dfrac{1}{x}dx} \\
= \dfrac{8}{3}{e^6} - \int\limits_1^{{e^4}} {\dfrac{2}{3}{x^{\frac{1}{2}}}dx} = \dfrac{8}{3}{e^6} - \left. {\dfrac{2}{3}.\dfrac{2}{3}{x^{\frac{3}{2}}}} \right|_1^{{e^4}}\\
= \dfrac{8}{3}{e^6} - \dfrac{4}{9}{e^6} + \dfrac{4}{9}= \dfrac{20}{9}{e^6}+ \dfrac{4}{9}.
\end{array}\)
LG b
b) \(\displaystyle \int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} \)
Lời giải chi tiết:
Ta có:
\(\eqalign{
& \int_{{\pi \over 6}}^{{\pi \over 2}} {{{xdx} \over {{{\sin }^2}x}}} = \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {xd( - \cot x) = - x\cot x\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right.} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {\cot xdx} \cr
& = {{\pi \sqrt 3 } \over 6} + \int\limits_{{\pi \over 6}}^{{\pi \over 2}} {{{d\sin x} \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}}} = {{\pi \sqrt 3 } \over 6} + \ln |sinx|\left| {_{{\pi \over 6}}^{{\pi \over 2}}} \right. = {{\pi \sqrt 3 } \over 6} + \ln 2 \cr} \)
Cách trình bày khác:
Đặt \(\left\{ \begin{array}{l}u = x\\dv = \dfrac{1}{{{{\sin }^2}x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = - \cot x\end{array} \right.\)
Khi đó \(I = \left. { - x\cot x} \right|_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} + \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} {\cot xdx} \)\( = \dfrac{\pi }{6}.\sqrt 3 + \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} {\dfrac{{\cos x}}{{\sin x}}dx} \)
Đặt \(\sin x = t \Rightarrow dt = \cos xdx\)
Đổi cận \(x = \dfrac{\pi }{6} \Rightarrow t = \dfrac{1}{2},\) \(x = \dfrac{\pi }{2} \Rightarrow t = 1\)
\( \Rightarrow I = \dfrac{\pi }{6}.\sqrt 3 + \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{dt}}{t}} \) \( = \sqrt 3 .\dfrac{\pi }{6} + \left. {\ln \left| t \right|} \right|_{\dfrac{1}{2}}^1 = \sqrt 3 .\dfrac{\pi }{6} - \ln \dfrac{1}{2}\) \( = \dfrac{{\sqrt 3 \pi }}{6} + \ln 2\)
LG c
c) \(\int_0^\pi {(\pi - x)\sin {\rm{x}}dx} \)
Lời giải chi tiết:
Ta có:
\(\eqalign{
& \int_0^\pi {(\pi - x)\sin {\rm{x}}dx} = \int\limits_0^\pi {(\pi - x)d( - {\mathop{\rm cosx}\nolimits} )} \cr
& = - (\pi - x)cosx\left| {_0^\pi } \right. + \int\limits_0^\pi {{\mathop{\rm cosxd}\nolimits} (\pi - x) = \pi - s{\rm{inx}}\left| {_0^\pi } \right.} = \pi \cr} \)
Cách trình bày khác:
Đặt \(\left\{ \begin{array}{l}u = \pi - x\\dv = \sin xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = - dx\\v = - \cos x\end{array} \right.\)
\( \Rightarrow I = \left. { - \left( {\pi - x} \right)\cos x} \right|_0^\pi - \int\limits_0^\pi {\cos xdx} \) \( = \pi - \left. {\sin x} \right|_0^\pi = \pi + 0 - 0 = \pi \)
LG d
d) \(\int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx\)
Lời giải chi tiết:
Ta có:
\(\eqalign{
& \int_{ - 1}^0 {(2x + 3){e^{ - x}}} dx = \int\limits_{ - 1}^0 {(2x + 3)d( - {e^{ - x}}} ) \cr
& = (2x + 3){e^{ - x}}\left| {_0^{ - 1}} \right. + \int\limits_{ - 1}^e {{e^{ - x}}} .2dx = e - 3 + 2{e^{ - x}}\left| {_0^1} \right. = 3e - 5 \cr} \)
Cách trình bày khác:
Đặt \(\left\{ \begin{array}{l}u = 2x + 3\\dv = {e^{ - x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2dx\\v = - {e^{ - x}}\end{array} \right.\)
\( \Rightarrow I = \left. { - \left( {2x + 3} \right){e^{ - x}}} \right|_{ - 1}^0 + 2\int\limits_{ - 1}^0 {{e^{ - x}}dx} \) \( = - 3 + e - \left. {2{e^{ - x}}} \right|_{ - 1}^0\) \( = - 3 + e - 2 + 2e = 3e - 5\)
Loigiaihay.com
- Bài 12 trang 147 SGK Giải tích 12
- Bài 13 trang 148 SGK Giải tích 12
- Bài 14 trang 148 SGK Giải tích 12
- Bài 15 trang 148 SGK Giải tích 12
- Bài 16 trang 148 SGK Giải tích 12
>> Xem thêm