TUYENSINH247 ĐỒNG GIÁ 299K TOÀN BỘ KHOÁ HỌC TỪ LỚP 1-LỚP 12

TẶNG KHOÁ ĐỀ THI HK2 TỚI 599K

Chỉ còn 2 ngày
Xem chi tiết

Bài 8 trang 224 Sách bài tập Hình học lớp 12 Nâng cao.


Cho hình chóp S.ABC có đáy ABC

Lựa chọn câu để xem lời giải nhanh hơn

Cho hình chóp S.ABC có đáy ABC là tam giác cân, AB = AC = a ; mp(SBC)mp(ABC) và SA = SB = a ;

LG 1

Chứng minh rằng SBC là tam giác vuông.

Lời giải chi tiết:

(h.l 12a)

        

Gọi I là trung điểm của BC, ta có AI  BC. Do (SBC) (ABC) nên AI  mp(SBC), suy ra ΔΔSAI vuông tại I.

Các tam giác vuông SAIBAI có IA chung, AB = AS, do đó IB = IS, mặt khác IB = IC, suy ra tam giác SBC vuông ở S.

LG 2

Tính thể tích của khối cầu ngoại tiếp hình chóp S.ABC biết SC=3a2.SC=3a2.

Lời giải chi tiết:

Vì IB = IC = IS và AI  (SBC) nên tâm O của mặt cầu ngoại tiếp hình chóp S.ABC thuộc đường thẳng AI, suy ra O là tâm đường tròn ngoại tiếp tam giác cân ABC và bán kính R của mặt cầu ngoại tiếp S.ABC cũng là bán kính đường tròn ngoại tiếp tam giác ABC.

Gọi J là giao điểm thứ hai của AI (h.l 12b) và đường tròn ngoại tiếp tam giác ABC thì AJ = 2R và AB2 = AI.AJ hay a2 = AI.2R

 R=a22AI.R=a22AI.           (1)

Mặt khác

BC2=SB2+SC2=a2+9a24=13a24BC2=SB2+SC2=a2+9a24=13a24

AI2=AB2BI2=a2BC24AI2=AB2BI2=a2BC24

               =a213a216=3a216AI=a34.=a213a216=3a216AI=a34. (2)

Thay (2) vào (1) ta có R=2a3.R=2a3.

Vậy thể tích khối cầu ngoại tiếp hình chóp S.ABC là 43π8a333=32πa393.43π8a333=32πa393.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.