Bài 3 trang 223 Sách bài tập Hình học lớp 12 Nâng cao >
Xét hình lăng trụ tam giác đều với chiều cao h
Xét hình lăng trụ tam giác đều với chiều cao h, nội tiếp một mặt cầu bán kính R (h < 2R) (tức sáu đỉnh của hình lăng trụ nằm trên mặt cầu đó).
LG a
Tính cạnh đáy của hình lăng trụ.
Lời giải chi tiết:
(h.107).
Gọi O là tâm của mặt cầu ngoại tiếp hình lăng trụ, I là hình chiếu của O trên mặt phẳng (ABC). Khi đó ta có : \(OA = OB = OC = R,OI = {1 \over 2}h.\) Tam giác OAI vuông tại I nên\(A{I^2} = O{A^2} - {\rm{ }}O{I^2} = {\rm{ }}{R^2}\; - {{{h^2}} \over 4}.\)
IA là bán kính đường tròn ngoại tiếp tam giác đều ABC nên
\(AB = IA\sqrt 3 = \sqrt {3\left( {{R^2} - {{{h^2}} \over 4}} \right)} .\)
Vậy cạnh đáy của hình lăng trụ bằng
\({1 \over 2}\sqrt {3\left( {4{R^2} - {h^2}} \right)} .\)
LG b
Tính thể tích của khối lăng trụ.
Lời giải chi tiết:
Thể tích của khối lăng trụ ABC.A'B'C' là :
\(V = {S_{ABC}}.h = {{A{B^2}\sqrt 3 } \over 4}h = {{3\sqrt 3 } \over {16}}\left( {4{R^2} - {h^2}} \right)h.\)
LG c
Tính h theo R để mỗi mặt bên của hình lăng trụ là hình vuông.
Lời giải chi tiết:
Mỗi mặt bên của hình lăng trụ là hình vuông khi và chỉ khi AB = h, tức \({1 \over 2}\sqrt {3\left( {4{R^2} - {h^2}} \right)} = h \Leftrightarrow h = \sqrt {{{12} \over 7}} R\) (để ý rằng \(\sqrt {{{12} \over 7}} \)< 2).
Loigiaihay.com
- Bài 4 trang 223 Sách bài tập Hình học lớp 12 Nâng cao.
- Bài 5 trang 223 Sách bài tập Hình học lớp 12 Nâng cao.
- Bài 6 trang 223 Sách bài tập Hình học lớp 12 Nâng cao.
- Bài 7 trang 224 Sách bài tập Hình học lớp 12 Nâng cao.
- Bài 8 trang 224 Sách bài tập Hình học lớp 12 Nâng cao.
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao