Bài 12 trang 225 Sách bài tập Hình học lớp 12 Nâng cao.


Cho hình nón tròn xoay đỉnh S,

Lựa chọn câu để xem lời giải nhanh hơn

Cho hình nón tròn xoay đỉnh S, đáy là đường tròn tâm O. Gọi A là điểm cố định và M là điểm thay đổi cùng thuộc đường tròn đáy hình nón. Đặt

\(AOM{\rm{ }} = {\rm{ }}\alpha \) . Gọi P là góc giữa mp(SAM) và mặt phẳng chứa đáy hình nón ; khoảng cách từ O đến mp(SAM) bằng a.

LG 1

Tính thể tích khối nón đã cho theo a, \(\alpha \),\(\beta \).

Lời giải chi tiết:

     

Gọi I là trung điểm của AM thì OI \( \bot \)AM và SI \( \bot \)AM từ đó \(\widehat {SIO} = \beta \). Gọi H là hình chiếu của O trên SI thì OH \( \bot \) mp(SAM), từ đó OH = a.

Ta có \(OI = {{OH} \over {\sin \beta }} = {a \over {\sin \beta }}.\)

\(OM = {{OI} \over {\cos {\alpha  \over 2}}} = {a \over {sin\beta \cos {\alpha  \over 2}}}.\)

\(SO = OI\tan \beta  = {a \over {sin\beta }}.tan\beta  = {a \over {\cos \beta }}.\)

Từ đó thể tích khối nón đã cho là

\(V = {{\pi {a^3}} \over {3{{\cos }^2}{\alpha  \over 2}{{\sin }^2}\beta \cos \beta }}.\)

LG 2

Xác định điểm M để tam giác SAM có diện tích lớn nhất.

Lời giải chi tiết:

Ta có 

Vì SA không đổi nên \({S_{\Delta SAM}}\) lớn nhất \(\Leftrightarrow \sin \widehat {ASM}\) lớn nhất.

Dễ thấy \(\widehat {ASB} > \widehat {ASM}\) (B là điểm đối xứng của A qua O). Vậy có hai trường hợp :

a) \(0 < \widehat {ASB} < {90^0}\) Khi đó , \(\sin \widehat {ASM} \le \sin \widehat {ASB}\) từ đó \(\sin \widehat {ASM}\) lớn nhất khi và chỉ khi M trùng với B.

b) \({90^0} < \widehat {ASB} < {180^0}\) Khi đó \(\sin \widehat {ASM}\) lớn nhất khi và chỉ khi \( \widehat {ASM} = {90^0}\). Vậy có hai vị trí của M trên đường tròn đáy hình nón để diện tích tam giác SAM lớn nhất, đó là hai điểm M sao cho \(\widehat {ASM} = {90^0}\)

LG 3

Chứng minh rằng hình chiếu H của điểm O trên mp(SAM) thuộc một đường tròn cố định.

Lời giải chi tiết:

Vì OH \( \bot \) mp(SAM) nên OH \( \bot \) SA. Vậy H thuộc mp(P) đi qua O và vuông góc với SA tại K. Ta có (P) là mặt phẳng cố định, ngoài ra \(\widehat {OHK} = {90^0}\), tức là H thuộc đường tròn đường kính OK trong mặt phẳng (P) nêu trên, tất nhiên đường tròn này cố định.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí