Bài 1 trang 171 SGK Đại số và Giải tích 11

Bình chọn:
4 trên 15 phiếu

Giải bài 1 trang 171 SGK Đại số và Giải tích 11. Tìm vi phân của các hàm số sau:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm vi phân của các hàm số sau:

LG a

\(y = \dfrac{\sqrt{x}}{a+b}\) (\(a, b\) là hằng số);

Phương pháp giải:

Sử dụng công thức tính vi phân: \(dy = df\left( x \right) = f'\left( x \right)dx\)

Lời giải chi tiết:

\(\begin{array}{l}
dy = d\left( {\dfrac{{\sqrt x }}{{a + b}}} \right) = \left( {\dfrac{{\sqrt x }}{{a + b}}} \right)'dx\\
\Rightarrow dy = \dfrac{1}{{2\left( {a + b} \right)\sqrt x }}dx
\end{array}\)

LG b

\(y = (x^2+ 4x + 1)(x^2- \sqrt x)\).

Phương pháp giải:

Sử dụng công thức tính vi phân: \(dy = df\left( x \right) = f'\left( x \right)dx\)

Lời giải chi tiết:

\(\begin{array}{l}
dy = d\left[ {\left( {{x^2} + 4x + 1} \right)\left( {{x^2} - \sqrt x } \right)} \right]\\
\Rightarrow dy = \left[ {\left( {{x^2} + 4x + 1} \right)\left( {{x^2} - \sqrt x } \right)} \right]'dx\\
= \left[ {\left( {2x + 4} \right)\left( {{x^2} - \sqrt x } \right) + \left( {{x^2} + 4x + 1} \right)\left( {2x - \dfrac{1}{{2\sqrt x }}} \right)} \right]dx
\end{array}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 4. Vi phân

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng