Bài tập trắc nghiệm trang 203, 204, 205 SBT đại số và giải tích 11


Giải bài tập trắc nghiệm trang 203, 204, 205 sách bài tập đại số và giải tích 11

Lựa chọn câu để xem lời giải nhanh hơn

Chọn đáp án đúng:

5.30

Tính y', biết y = x5 - 4x3 - x2 + x/2

A. y' = 5x4 - 12x2 - 2x + 1/2

B. y' = 5x4 - 10x2 + 1/2

C. y' = 5x4 - 2x

D. y' = 5x4 + 12x4 - 2x - 1/2

Lời giải chi tiết:

\(\begin{array}{l}y' = 5{x^4} - 4.3{x^2} - 2x + \dfrac{1}{2}\\ = 5{x^4} - 12{x^2} - 2x + \dfrac{1}{2}\end{array}\)

Chọn đáp án: A

5.31

\(y =  - 6\sqrt x  + \dfrac{3}{x}\). Tìm y'.

A. \(y' = \dfrac{3}{{\sqrt x }}\)

B. \(y' =  - \dfrac{3}{{\sqrt x }} - \dfrac{3}{{{x^2}}}\)

C. \(y' = \dfrac{3}{{\sqrt x }} - 5\)

D. \(y' =  - \dfrac{3}{{\sqrt x }} + \dfrac{3}{x}\)

Lời giải chi tiết:

\(\begin{array}{l}y' =  - 6.\dfrac{1}{{2\sqrt x }} - \dfrac{3}{{{x^2}}}\\ =  - \dfrac{3}{{\sqrt x }} - \dfrac{3}{{{x^2}}}\end{array}\)

Chọn đáp án: B

5.32

Tính đạo hàm của hàm số \(y = \dfrac{{2x - 3}}{{x + 4}}\)

A. \(y' = \dfrac{{10}}{{{{\left( {x + 4} \right)}^2}}}\)

B. \(y' = \dfrac{{11}}{{{{\left( {x + 4} \right)}^2}}}\)

C. \(y' = \dfrac{5}{{{{\left( {x + 4} \right)}^2}}}\)

D. \(y' = \dfrac{{ - 11}}{{{{\left( {x + 4} \right)}^2}}}\)

Lời giải chi tiết:

\(\begin{array}{l}y' = \dfrac{{\left( {2x - 3} \right)'\left( {x + 4} \right) - \left( {2x - 3} \right)\left( {x + 4} \right)'}}{{{{\left( {x + 4} \right)}^2}}}\\ = \dfrac{{2\left( {x + 4} \right) - \left( {2x - 3} \right)}}{{{{\left( {x + 4} \right)}^2}}}\\ = \dfrac{{11}}{{{{\left( {x + 4} \right)}^2}}}\end{array}\)

Chọn đáp án: B

5.33

Cho hàm số \(y = x\sqrt {1 + {x^2}} \) . Tính y'.

A. \(y' = \dfrac{{1 - 2{x^2}}}{{\sqrt {1 + {x^2}} }}\)

B. \(y' = \dfrac{{1 + 2{x^2}}}{{\sqrt {1 - {x^2}} }}\)

C. \(y' = \dfrac{{1 + 2{x^2}}}{{1 + {x^2}}}\)

D. \(y' = \dfrac{{1 + 2{x^2}}}{{\sqrt {1 + {x^2}} }}\)

Lời giải chi tiết:

\(\begin{array}{l}y' = \left( x \right)'.\sqrt {1 + {x^2}}  + x.\left( {\sqrt {1 + {x^2}} } \right)'\\ = \sqrt {1 + {x^2}}  + x.\dfrac{{\left( {1 + {x^2}} \right)'}}{{2\sqrt {1 + {x^2}} }}\\ = \sqrt {1 + {x^2}}  + x.\dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}\\ = \sqrt {1 + {x^2}}  + \dfrac{{{x^2}}}{{\sqrt {1 + {x^2}} }}\\ = \dfrac{{1 + {x^2} + {x^2}}}{{\sqrt {1 + {x^2}} }} = \dfrac{{1 + 2{x^2}}}{{\sqrt {1 + {x^2}} }}\end{array}\)

Chọn đáp án: D

5.34

Cho f(x) = 5 - 3x - x2. Tính f'(0), f'(-2).

A. -3; 0            B. -2; 1

C. -3; 1            D. 3; 2

Lời giải chi tiết:

\(\begin{array}{l}f'\left( x \right) =  - 3 - 2x\\f'\left( 0 \right) =  - 3 - 2.0 =  - 3\\f'\left( { - 2} \right) =  - 3 - 2.\left( { - 2} \right) = 1\end{array}\)

Chọn đáp án: C

5.35

Cho hàm số \(y = \sqrt {{x^3} - 2{x^2} + 1} \) . Tìm y'.

Lời giải chi tiết:

\(\begin{array}{l}y' = \dfrac{{\left( {{x^3} - 2{x^2} + 1} \right)'}}{{2\sqrt {{x^3} - 2{x^2} + 1} }}\\ = \dfrac{{3{x^2} - 2.2x}}{{2\sqrt {{x^3} - 2{x^2} + 1} }}\\ = \dfrac{{3{x^2} - 4x}}{{2\sqrt {{x^3} - 2{x^2} + 1} }}\end{array}\)

Chọn đáp án: D

5.36

Cho f(x) = x5 + x3 - 2x + 3. Tính f'(1), f'(0).

A. 6; 2            B. 6; -2

C. 6; 6            D. -2; 6

Lời giải chi tiết:

\(\begin{array}{l}f'\left( x \right) = 5{x^4} + 3{x^2} - 2\\f'\left( 1 \right) = 5 + 3 - 2 = 6\\f'\left( 0 \right) = 5.0 + 3.0 - 2 =  - 2\end{array}\)

Chọn đáp án: B

5.37

Giải bất phương trình φ'(x) < 0 với \(\varphi \left( x \right) = \dfrac{{2x - 1}}{{{x^2} + 1}}\)

Lời giải chi tiết:

\(\begin{array}{l}\varphi '\left( x \right)\\ = \dfrac{{\left( {2x - 1} \right)'\left( {{x^2} + 1} \right) - \left( {2x - 1} \right)\left( {{x^2} + 1} \right)'}}{{{{\left( {{x^2} + 1} \right)}^2}}}\\ = \dfrac{{2\left( {{x^2} + 1} \right) - \left( {2x - 1} \right).2x}}{{{{\left( {{x^2} + 1} \right)}^2}}}\\ = \dfrac{{2{x^2} + 2 - 4{x^2} + 2x}}{{{{\left( {{x^2} + 1} \right)}^2}}}\\ = \dfrac{{ - 2{x^2} + 2x + 2}}{{{{\left( {{x^2} + 1} \right)}^2}}}\\\varphi '\left( x \right) < 0\\ \Leftrightarrow \dfrac{{ - 2{x^2} + 2x + 2}}{{{{\left( {{x^2} + 1} \right)}^2}}} < 0\\ \Leftrightarrow  - 2{x^2} + 2x + 2 < 0\\ \Leftrightarrow \left[ \begin{array}{l}x > \dfrac{{1 + \sqrt 5 }}{2}\\x < \dfrac{{1 - \sqrt 5 }}{2}\end{array} \right.\end{array}\)

Chọn đáp án: A

5.38

Tính \(f'\left( 1 \right)\) biết \(f\left( x \right) = \dfrac{1}{x} + \dfrac{2}{{{x^2}}} + \dfrac{3}{{{x^3}}}\)

A. 6                 B. 10

C. 9                 D. -14

Lời giải chi tiết:

\(\begin{array}{l}f'\left( x \right) =  - \dfrac{1}{{{x^2}}} + \dfrac{{ - 2\left( {{x^2}} \right)'}}{{{x^4}}} + \dfrac{{ - 3\left( {{x^3}} \right)'}}{{{x^6}}}\\ =  - \dfrac{1}{{{x^2}}} - \dfrac{{2.2x}}{{{x^4}}} - \dfrac{{3.3{x^2}}}{{{x^6}}}\\ =  - \dfrac{1}{{{x^2}}} - \dfrac{4}{{{x^3}}} - \dfrac{9}{{{x^4}}}\\ \Rightarrow f'\left( 1 \right) =  - 1 - 4 - 9 =  - 14\end{array}\)

Chọn đáp án: D

5.39

Tính h'(0), biết rằng \(h\left( x \right) = \dfrac{x}{{\sqrt {4 - {x^2}} }}\)

A. 2            B. -1            C. 1/2            D. 4

Lời giải chi tiết:

\(\begin{array}{l}h'\left( x \right)\\ = \dfrac{{\left( x \right)'.\sqrt {4 - {x^2}}  - x.\left( {\sqrt {4 - {x^2}} } \right)'}}{{{{\left( {\sqrt {4 - {x^2}} } \right)}^2}}}\\ = \dfrac{{\sqrt {4 - {x^2}}  - x.\dfrac{{\left( {4 - {x^2}} \right)'}}{{2\sqrt {4 - {x^2}} }}}}{{4 - {x^2}}}\\ = \dfrac{{\sqrt {4 - {x^2}}  - x.\dfrac{{ - 2x}}{{2\sqrt {4 - {x^2}} }}}}{{4 - {x^2}}}\\ = \dfrac{{\sqrt {4 - {x^2}}  + \dfrac{{{x^2}}}{{\sqrt {4 - {x^2}} }}}}{{4 - {x^2}}}\\ = \dfrac{{4 - {x^2} + {x^2}}}{{\left( {4 - {x^2}} \right)\sqrt {4 - {x^2}} }}\\ = \dfrac{4}{{\left( {4 - {x^2}} \right)\sqrt {4 - {x^2}} }}\\ \Rightarrow h'\left( 0 \right) = \dfrac{4}{{\left( {4 - 0} \right)\sqrt {4 - 0} }} = \dfrac{1}{2}\end{array}\)

Chọn đáp án: C

Loigiaihay.com

 

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài