Bài 5.16 trang 202 SBT đại số và giải tích 11


Giải bài 5.16 trang 202 sách bài tập đại số và giải tích 11. Tìm đạo hàm của hàm số sau:

Đề bài

Tìm đạo hàm của hàm số sau:

\(y = \left( {{x^2} + 1} \right){\left( {{x^3} + 1} \right)^2}{\left( {{x^4} + 1} \right)^3}.\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(\left( {uvw} \right)' = u'vw + uv'w + uvw'\)

Lời giải chi tiết

Ta có:

\(\begin{array}{l}
y' = \left( {{x^2} + 1} \right)'{\left( {{x^3} + 1} \right)^2}{\left( {{x^4} + 1} \right)^3}\\
+ \left( {{x^2} + 1} \right)\left[ {{{\left( {{x^3} + 1} \right)}^2}} \right]'{\left( {{x^4} + 1} \right)^3}\\
+ \left( {{x^2} + 1} \right){\left( {{x^3} + 1} \right)^2}\left[ {{{\left( {{x^4} + 1} \right)}^3}} \right]'\\
= 2x{\left( {{x^3} + 1} \right)^2}{\left( {{x^4} + 1} \right)^3}\\
+ \left( {{x^2} + 1} \right)\left[ {2\left( {{x^3} + 1} \right)\left( {{x^3} + 1} \right)'} \right]{\left( {{x^4} + 1} \right)^3}\\
+ \left( {{x^2} + 1} \right){\left( {{x^3} + 1} \right)^2}\left[ {3{{\left( {{x^4} + 1} \right)}^2}\left( {{x^4} + 1} \right)'} \right]\\
= 2x{\left( {{x^3} + 1} \right)^2}{\left( {{x^4} + 1} \right)^3}\\
+ \left( {{x^2} + 1} \right)\left[ {2\left( {{x^3} + 1} \right).3{x^2}} \right]{\left( {{x^4} + 1} \right)^3}\\
+ \left( {{x^2} + 1} \right){\left( {{x^3} + 1} \right)^2}\left[ {3{{\left( {{x^4} + 1} \right)}^2}.4{x^3}} \right]\\
= 2x{\left( {{x^3} + 1} \right)^2}{\left( {{x^4} + 1} \right)^3}\\
+ 6{x^2}\left( {{x^2} + 1} \right)\left( {{x^3} + 1} \right){\left( {{x^4} + 1} \right)^3}\\
+ 12{x^3}\left( {{x^2} + 1} \right){\left( {{x^3} + 1} \right)^2}{\left( {{x^4} + 1} \right)^2}
\end{array}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài