Bài 5.21 trang 203 SBT đại số và giải tích 11


Đề bài

Cho hàm số \(f\left( x \right) = x - 2\sqrt {{x^2} + 12} .\) Giải bất phương trình \(f'\left( x \right) \le 0.\)

 (Đề thi tốt nghiệp THPT 2010)

Lời giải chi tiết

 

\(\eqalign{
& f'\left( x \right) = 1 - {{2x} \over {\sqrt {{x^2} + 12} }} \le 0{\rm{ }} \cr 
& \Leftrightarrow \sqrt {{x^2} + 12} \le 2x \cr 
& \Leftrightarrow \left\{ \matrix{
{x^2} + 12 \le 4{x^2} \hfill \cr 
x \ge 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
3{x^2} \ge 12 \hfill \cr 
x \ge 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
{x^2} \ge 4 \hfill \cr 
x \ge 0 \hfill \cr} \right. \Leftrightarrow x \ge 2. \cr}\) 

Đáp số: \({\rm{[}}2; + \infty ).\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài