Bài 5.13 trang 202 SBT đại số và giải tích 11


Giải bài 5.13 trang 202 sách bài tập đại số và giải tích 11. Tìm đạo hàm của các hàm số sau:...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Tìm đạo hàm của các hàm số sau:

\(\displaystyle y = {2 \over x} - {4 \over {{x^2}}} + {5 \over {{x^3}}} - {6 \over {7{x^4}}}.\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(\left( {\dfrac{1}{u}} \right)' = \dfrac{{ - u'}}{{{u^2}}}\)

Lời giải chi tiết

\(\begin{array}{l}
y' = \left( {\dfrac{2}{x} - \dfrac{4}{{{x^2}}} + \dfrac{5}{{{x^3}}} - \dfrac{6}{{7{x^4}}}} \right)'\\
= \left( {\dfrac{2}{x}} \right)' - \left( {\dfrac{4}{{{x^2}}}} \right)' + \left( {\dfrac{5}{{{x^3}}}} \right)' - \left( {\dfrac{6}{{7{x^4}}}} \right)'\\
= - \dfrac{2}{{{x^2}}} - \dfrac{{ - 4\left( {{x^2}} \right)'}}{{{x^4}}} + \dfrac{{ - 5\left( {{x^3}} \right)'}}{{{x^6}}} - \dfrac{{ - 6\left( {{x^4}} \right)'}}{{7{x^8}}}\\
= - \dfrac{2}{{{x^2}}} + \dfrac{{4.2x}}{{{x^4}}} - \dfrac{{5.3{x^2}}}{{{x^6}}} + \dfrac{{6.4{x^3}}}{{7{x^8}}}\\
= - \dfrac{2}{{{x^2}}} + \dfrac{8}{{{x^3}}} - \dfrac{{15}}{{{x^4}}} + \dfrac{{24}}{{7{x^5}}}
\end{array}\)

Loigiaihay.com


Bình chọn:
3.5 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí